Guide units EAGF, for electric cylinders (calculation example)

★/☆	Festo Core Range Covers the majority of your automation tasks	★ Generally ready for shipping ex works in 24 hours In stock at 13 Service Centres worldwide More than 2200 products	Ju
Worldwide:	Always in stock	☆ Generally ready for shipping ex works in 5 days	
Superb:	Festo quality at an attractive price	Assembled for you at 4 Service Centres worldwide	
Easy:	Simplified procurement and warehousing	Up to 6×10^{12} variants per product family	

Just look for the star!

Datasheet

Calculation example

Assuming:

- Guide unit: EAGF-P2-KF-45-200
- Stroke length: H = 200 mm
- Centre of gravity of payload: L_{load} = 15 mm
- Payload: m_{Load} = 2 kg
- Acceleration: $a_x = a_y = 2 \text{ m/s}^2$, $a_z = 0 \text{ m/s}^2$

- L_b = Centre of gravity of the moving mass of the guide unit
- L_{load} = Centre of gravity of payload
- $L_{b_total}~$ = Centre of gravity of the total moving mass

Length measurements should be provided with plus/minus signs as shown in the figure:

- $L_{b_total} > 0 \quad = \text{Centre of gravity of the moving mass is on the payload side}$
- $L_{b_total} < 0$ = Centre of gravity of the moving mass is on the guide side

To be determined:

- Loads Fy_{dyn}/Fz_{dyn} and $Mx_{dyn}/My_{dyn}/Mz_{dyn}$
- Functional operation with combined load
- Expected service life

Guide units EAGF, for electric cylinders EPCC

Datasheet

Calculation example	
Solution:	

Moving mass:

 $m_{b_total} = m_b + m_{load}$

From table \rightarrow page 4 m_{Ob} = 0.342 kg m_{Hb} = 0.0123 kg/10 mm

$$\label{eq:mb} \begin{split} m_b &= 0.342 \; kg + 200 \; mm \mbox{x} \; 0.0123 \; kg/10 \; mm = 0.588 \; kg \\ m_b \; {}_{total} &= 0.588 \; kg + 2 \; kg = 2.588 \; kg \end{split}$$

 $(m_b = m_{0b} + H \times m_{Hb})$

Centre of gravity of the moving mass

 $L_{b_ges} = \frac{L_1 \cdot m_1 + L_b \cdot m_b}{m_{b_ges}} \qquad (L_b = L_{0b} + H \times L_{Hb})$

From table \rightarrow page 4 $L_{Ob} = 25 \text{ mm}$ $L_{Hb} = 4.3 \text{ mm}/10 \text{ mm}$

 $L_b = 25 \text{ mm} + 200 \text{ mm} \text{ x} 4.3 \text{ mm}/10 \text{ mm} = 111 \text{ mm}$

 $L_{b_ges} = \frac{(+15 \text{ mm}) \cdot 2 \text{ kg} + (-111 \text{ mm}) \cdot 0{,}588 \text{ kg}}{2{,}588 \text{ kg}} = -14 \text{ mm}$

Loads Fy_{dyn}/Fz_{dyn} and Mx_{dyn}/My_{dyn}/Mz_{dyn}

$$\begin{split} Fy_{dyn} &= m_{b_total} \ x \ a_y = 2.588 \ kg \ x \ 2 \ m/s^2 = 5 \ N \\ Fz_{dyn} &= m_{b_total} \ x \ (g + a_z) = 2.588 \ kg \ x \ (9.81 \ m/s^2 + 0 \ m/s^2) = 25 \ N \end{split}$$

From table \rightarrow page 5 Dimension X = 63 mm

$$\begin{split} \text{My}_{\text{dyn}} = \text{Fz}_{\text{dyn}} \, x \, (\text{dimension X + stroke + L}_{\text{b_total}}) = 25 \, \text{N} \, x \, (63 \, \text{mm} + 200 \, \text{mm} + (-14 \, \text{mm})) = 6.3 \, \text{Nm} \\ \text{Mz}_{\text{dyn}} = \text{Fy}_{\text{dyn}} \, x \, (\text{dimension X + stroke + L}_{\text{b_total}}) = 5 \, \text{N} \, x \, (63 \, \text{mm} + 200 \, \text{mm} + (-14 \, \text{mm})) = 1.3 \, \text{Nm} \end{split}$$

Functional operation with combined load

Max. values from table → page 5		
$Fy_{max} = 320 N$		
Fz _{max} = 320 N	$f_{v} = \frac{ F_{y1} }{F_{v2}} + \frac{ F_{z1} }{F_{z2}} + \frac{ M_{x1} }{M_{x2}} + \frac{ M_{y1} }{M_{y2}} + \frac{ M_{z1} }{M_{z2}} \le 1$	
Mx _{max} = 15 Nm	yz zz zz zyz zz	
My _{max} = 10 Nm	$f_{\nu} = \frac{5N}{320N} + \frac{25N}{320N} + \frac{0Nm}{15Nm} + \frac{6,3Nm}{10Nm} + \frac{1,3Nm}{10Nm} = 0.86 \le 1$	
Mz _{max} = 10 Nm	$J_v = 320 N + 320 N + 15 Nm + 10 Nm + 10 Nm$	

 F_1/M_1 = dynamic value F_2/M_2 = maximum value

Expected service life

$$L = \frac{L_{ref}}{f_v^3} = \frac{5000 \ km}{0.86^3} = 7930 \ km$$

m _b	= Moving mass of the guide unit
шp	8 0
m _{0b}	= Moving mass with 0 mm stroke
m _{Hb}	= Additional mass per 10 mm stroke
Н	= Stroke length

L_b = Centre of gravity of the moving mass of the guide unit

 m_b = Moving mass of the guide unit

- L₁ = Centre of gravity of payload
- $m_1 = Payload$
- L_{0b} = Centre of gravity of the moving mass with 0 mm stroke
- L_{Hb} = Additional centre of gravity of the moving mass per 10 mm stroke

Length measurements should be provided with plus/minus signs as shown in the figure:

$$\begin{split} L_{b_total} > 0 &= \text{Centre of gravity of the moving mass is on the payload side} \\ L_{b_total} < 0 &= \text{Centre of gravity of the moving mass is on the guide side} \end{split}$$

Guide units EAGF, for electric cylinders ESBF

Datasheet

Calculation example

L_b = Centre of gravity of the moving mass of the guide unit

 L_{load} = Centre of gravity of payload

 $L_{b_total}~$ = Centre of gravity of the total moving mass

Length measurements should be provided with plus/minus signs as shown in the figure:

 $L_{b_total} > 0 \quad = \text{Centre of gravity of the moving mass is on the payload side}$

 $L_{b_{total}} < 0$ = Centre of gravity of the moving mass is on the guide side

Assuming:

Load side

- Guide unit: EAGF-V2-KF-32-200
- Stroke length: H = 200 mm

Guide side

_

- Centre of gravity of payload: L_{load} = 15 mm
- Payload: m_{Load} = 5 kg
- Acceleration: $a_x = a_y = 2 \text{ m/s}^2$, $a_z = 0 \text{ m/s}^2$

To be determined:

- Loads Fy_{dyn}/Fz_{dyn} and $Mx_{dyn}/My_{dyn}/Mz_{dyn}$
- Functional operation with combined load
- Expected service life

Guide units EAGF, for electric cylinders ESBF

Datasheet

Calculation example
Solution

Moving mass:

 $m_{b_total} = m_b + m_{load}$ ($m_b = m_{0b} + H \times m_{Hb}$)

From table \rightarrow page 10 m_{Ob} = 0.724 kg m_{Hb} = 0.018 kg/10 mm

$$\label{eq:mb} \begin{split} m_b &= 0.724 \; \text{kg} + 200 \; \text{mm} \; \text{x} \; 0.018 \; \text{kg} / 10 \; \text{mm} = 1.084 \; \text{kg} \\ m_b \; _{total} &= 1.084 \; \text{kg} + 5 \; \text{kg} = 6.084 \; \text{kg} \end{split}$$

Centre of gravity of the moving mass

 $L_{b_ges} = \frac{L_1 \cdot m_1 + L_b \cdot m_b}{m_{b_ges}} \qquad (L_b = L_{0b} + H \times L_{Hb})$

From table \rightarrow page 10 L_{Ob} = 30 mm L_{Hb} = 4.1 mm/10 mm

 $L_b = 30 \text{ mm} + 200 \text{ mm} \text{ x} 4.1 \text{ mm}/10 \text{ mm} = 112 \text{ mm}$

 $L_{b_ges} = \frac{(+15 \text{ mm}) \cdot 5kg + (-112 \text{ mm}) \cdot 1,084kg}{6,084 \text{ kg}} = -8 \text{ mm}$

Loads Fy_{dyn}/Fz_{dyn} and Mx_{dyn}/My_{dyn}/Mz_{dyn}

$$\begin{split} Fy_{dyn} &= m_{b_total} \ x \ a_y = 6.084 \ kg \ x \ 2 \ m/s^2 = 12 \ N \\ Fz_{dyn} &= m_{b_total} \ x \ (g + a_z) = 6.084 \ kg \ x \ (9.81 \ m/s^2 + 0 \ m/s^2) = 60 \ N \end{split}$$

From table \rightarrow page 11 Dimension X = 83 mm

$$\begin{split} My_{dyn} &= Fz_{dyn} \ x \ (dimension \ X + stroke + L_{b_tota}) = 60 \ N \ x \ (83 \ mm + 200 \ mm + (-8 \ mm)) = 16 \ Nm \\ Mz_{dyn} &= Fy_{dyn} \ x \ (dimension \ X + stroke + L_{b_tota}) = 12 \ N \ x \ (83 \ mm + 200 \ mm + (-8 \ mm)) = 3 \ Nm \end{split}$$

Functional operation with combined load

Max. values from table → page 11 Fy_{max} = 750 N Fz_{max} = 750 N Mx_{max} = 28 Nm My_{max} = 34 Nm Mz_{max} = 34 Nm

 F_1/M_1 = dynamic value F_2/M_2 = maximum value

Expected service life

$$L = \frac{L_{ref}}{f_v^3} = \frac{5000 \, km}{0.7^3} = 14000 \, km$$

mb= Moving mass of the guide unitmob= Moving mass with 0 mm strokemHb= Additional mass per 10 mm strokeH= Stroke length

 $\mathsf{L}_\mathsf{b} \qquad = \mathsf{Centre of gravity of the moving mass of the guide unit}$

 m_b = Moving mass of the guide unit

 L_1 = Centre of gravity of payload

 $m_1 = Payload$

 L_{0b} = Centre of gravity of the moving mass with 0 mm stroke

L_{Hb} = Additional centre of gravity of the moving mass per 10 mm stroke

Length measurements should be provided with plus/minus signs as shown in the figure:

$$\begin{split} L_{b_total} > 0 &= \text{Centre of gravity of the moving mass is on the payload side} \\ L_{b_total} < 0 &= \text{Centre of gravity of the moving mass is on the guide side} \end{split}$$