
Guide units EAGF, for electric cylinders (calculation example)

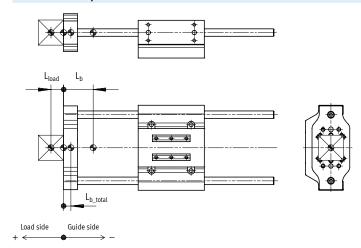
*		7
	•	

Festo Core Range

Covers the majority of your automation tasks

Worldwide:

Always in stock Superb: Festo quality at an attractive price Easy: Simplified procurement and warehousing



☆ Generally ready for shipping ex works in 5 days Assembled for you at 4 Service Centres worldwide Up to 6×10^{12} variants per product family

Datasheet

Calculation example

L_b = Centre of gravity of the moving mass of the guide unit

L_{load} = Centre of gravity of payload

 $L_{b_total}\;$ = Centre of gravity of the total moving mass

Length measurements should be provided with plus/minus signs as shown in the figure:

 $L_{b_total} > 0$ = Centre of gravity of the moving mass is on the payload side

 L_{b_total} < 0 = Centre of gravity of the moving mass is on the guide side

Assuming:

- Guide unit: EAGF-P2-KF-45-200
- Stroke length: H = 200 mm
- Centre of gravity of payload: $L_{load} = 15 \text{ mm}$
- Payload: m_{Load} = 2 kg
- Acceleration: $a_x = a_y = 2 \text{ m/s}^2$, $a_z = 0 \text{ m/s}^2$

To be determined:

- Loads Fy_{dyn}/Fz_{dyn} and Mx_{dyn}/My_{dyn}/Mz_{dyn}
- Functional operation with combined load
- Expected service life

Datasheet

Calculation example

Solution:

Moving mass:

$$m_{b_total} = m_b + m_{load}$$

$$(m_b = m_{0b} + H \times m_{Hb})$$

From table → page 4

 $m_{Ob} = 0.342 \text{ kg}$

 $m_{Hb} = 0.0123 \text{ kg}/10 \text{ mm}$

 $m_b = 0.342 \text{ kg} + 200 \text{ mm} \times 0.0123 \text{ kg}/10 \text{ mm} = 0.588 \text{ kg}$

 $m_b total = 0.588 kg + 2 kg = 2.588 kg$

Centre of gravity of the moving mass

$$L_{b_ges} = \frac{L_1 \cdot m_1 + L_b \cdot m_b}{m_{b_ges}}$$

$$m_{b_ges} - \frac{}{m_{b_ges}}$$

From table → page 4

 $L_{Ob} = 25 \text{ mm}$

 $L_{Hb} = 4.3 \text{ mm}/10 \text{ mm}$

 $L_b = 25 \text{ mm} + 200 \text{ mm} \times 4.3 \text{ mm}/10 \text{ mm} = 111 \text{ mm}$

$$L_{b_ges} = \frac{(+15 \ mm) \cdot 2 \ kg + (-111 \ mm) \cdot 0,588 \ kg}{2,588 \ kg} = -14 \ mm$$

 m_b = Moving mass of the guide unit

 m_{0b} = Moving mass with 0 mm stroke

= Additional mass per 10 mm stroke m_{Hb}

= Stroke length

= Centre of gravity of the moving mass of the guide unit

= Moving mass of the guide unit $m_{b} \\$

= Centre of gravity of payload L_1

 m_1 = Payload

 $L_{0b} \\$ = Centre of gravity of the moving mass with 0 mm stroke

= Additional centre of gravity of the moving mass per 10 mm stroke

Length measurements should be provided with plus/minus signs as shown in the

 $L_{b_total} > 0$ = Centre of gravity of the moving mass is on the payload side

 $L_{b total} < 0$ = Centre of gravity of the moving mass is on the guide side

Loads Fy_{dyn}/Fz_{dyn} and Mx_{dyn}/My_{dyn}/Mz_{dyn}

$$Fy_{dyn} = m_{b_total} x a_y = 2.588 \text{ kg } x 2 \text{ m/s}^2 = 5 \text{ N}$$

$$Fz_{dyn} = m_{b_total} x (g + a_z) = 2.588 \text{ kg } x (9.81 \text{ m/s}^2 + 0 \text{ m/s}^2) = 25 \text{ N}$$

From table → page 5

Dimension X = 63 mm

$$My_{dyn} = Fz_{dyn} x (dimension X + stroke + L_{b_total}) = 25 N x (63 mm + 200 mm + (-14 mm)) = 6.3 Nm$$

$$Mz_{dyn} = Fy_{dyn} x (dimension X + stroke + L_{b total}) = 5 N x (63 mm + 200 mm + (-14 mm)) = 1.3 Nm$$

Functional operation with combined load

Max. values from table → page 5

$$Fy_{max} = 320 \text{ N}$$

$$Fz_{max} = 320 \text{ N}$$

$$f_v = \frac{|F_{y1}|}{F_{v2}} + \frac{|F_{z1}|}{F_{z2}} + \frac{|M_{x1}|}{M_{x2}} + \frac{|M_{y1}|}{M_{y2}}$$

$$Mx_{max} = 15 \text{ Nm}$$

$$My_{max} = 10 \text{ Nm}$$

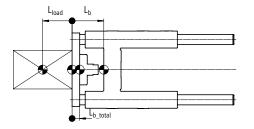
$$My_{max} = 10 \text{ Nm}$$

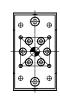
 $Mz_{max} = 10 \text{ Nm}$

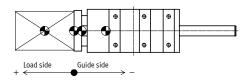
$$f_v = \frac{\left|F_{y1}\right|}{F_{y2}} + \frac{\left|F_{z1}\right|}{F_{z2}} + \frac{\left|M_{x1}\right|}{M_{x2}} + \frac{\left|M_{y1}\right|}{M_{y2}} + \frac{\left|M_{z1}\right|}{M_{z2}} \le 1$$

$$f_v = \frac{5 N}{320 N} + \frac{25 N}{320 N} + \frac{0 Nm}{15 Nm} + \frac{6,3 Nm}{10 Nm} + \frac{1,3 Nm}{10 Nm} = 0,86 \le 1$$

 $F_1/M_1 = dynamic value$ $F_2/M_2 = maximum value$


Expected service life


$$L = \frac{L_{ref}}{f_v^3} = \frac{5000 \; km}{0.86^3} = 7930 \; km$$


Guide units EAGF, for electric cylinders ESBF

Datasheet

Calculation example

L_b = Centre of gravity of the moving mass of the guide unit

 L_{load} = Centre of gravity of payload

 $L_{b_total} \ = Centre \ of \ gravity \ of \ the \ total \ moving \ mass$

Length measurements should be provided with plus/minus signs as shown in the figure:

 $L_{b_total} > 0$ = Centre of gravity of the moving mass is on the payload side

 $L_{b \text{ total}} < 0$ = Centre of gravity of the moving mass is on the guide side

Assuming:

- Guide unit: EAGF-V2-KF-32-200
- Stroke length: H = 200 mm
- Centre of gravity of payload: $L_{load} = 15 \text{ mm}$
- Payload: m_{Load} = 5 kg
- Acceleration: $a_x = a_y = 2 \text{ m/s}^2$, $a_z = 0 \text{ m/s}^2$

To be determined:

- Loads Fy_{dyn}/Fz_{dyn} and $Mx_{dyn}/My_{dyn}/Mz_{dyn}$
- Functional operation with combined load
- · Expected service life

Datasheet

Calculation example

Solution:

Moving mass:

 $m_{b_total} = m_b + m_{load}$

 $(m_b = m_{0b} + H \times m_{Hb})$

From table → page 10

 $m_{Ob} = 0.724 \text{ kg}$

 $m_{Hh} = 0.018 \text{ kg}/10 \text{ mm}$

 $m_b = 0.724 \text{ kg} + 200 \text{ mm} \times 0.018 \text{ kg}/10 \text{ mm} = 1.084 \text{ kg}$

 m_b total = 1.084 kg + 5 kg = 6.084 kg

Centre of gravity of the moving mass

 $L_{b_ges} = \frac{L_1 \cdot m_1 + L_b \cdot m_b}{m_{b_ges}}$

 $(L_b = L_{0b} + H \times L_{Hb})$

From table → page 10

 $L_{Ob} = 30 \text{ mm}$

 $L_{Hb} = 4.1 \text{ mm}/10 \text{ mm}$

 $L_b = 30 \text{ mm} + 200 \text{ mm} \times 4.1 \text{ mm}/10 \text{ mm} = 112 \text{ mm}$

 $L_{b_ges} = \frac{(+15 \ mm) \cdot 5kg + (-112 \ mm) \cdot 1,084kg}{6,084 \ kg} = -8 \ mm$

m_b = Moving mass of the guide unit

 m_{0b} = Moving mass with 0 mm stroke

m_{Hb} = Additional mass per 10 mm stroke

H = Stroke length

L_b = Centre of gravity of the moving mass of the guide unit

 m_b = Moving mass of the guide unit

L₁ = Centre of gravity of payload

 $m_1 = Payload$

 L_{0h} = Centre of gravity of the moving mass with 0 mm stroke

L_{Hb} = Additional centre of gravity of the moving mass per 10 mm stroke

Length measurements should be provided with plus/minus signs as shown in the figure:

 $L_{b_total} > 0$ = Centre of gravity of the moving mass is on the payload side

 $L_{b total} < 0$ = Centre of gravity of the moving mass is on the guide side

Loads Fy_{dyn}/Fz_{dyn} and Mx_{dyn}/My_{dyn}/Mz_{dyn}

 $Fy_{dyn} = m_{b_total} x a_y = 6.084 \text{ kg } x 2 \text{ m/s}^2 = 12 \text{ N}$

 $Fz_{dyn} = m_{b_total} x (g + a_z) = 6.084 kg x (9.81 m/s^2 + 0 m/s^2) = 60 N$

From table → page 11

Dimension X = 83 mm

 $My_{dyn} = Fz_{dyn} x \text{ (dimension X + stroke + } L_{b_total}) = 60 \text{ N x (83 mm + 200 mm + (-8 mm))} = 16 \text{ Nm}$

 $Mz_{dyn} = Fy_{dyn} x (dimension X + stroke + L_{b total}) = 12 N x (83 mm + 200 mm + (-8 mm)) = 3 Nm$

Functional operation with combined load

Max. values from table \rightarrow page 11

 $Fy_{max} = 750 \text{ N}$

 $Fz_{max} = 750 \text{ N}$

 $f_v = \frac{\left| F_{y1} \right|}{F_{y2}} + \frac{\left| F_{z1} \right|}{F_{z2}} + \frac{\left| M_{x1} \right|}{M_{x2}} + \frac{\left| M_{y1} \right|}{M_{y2}} + \frac{\left| M_{z1} \right|}{M_{z2}} \leq 1$

 $Mx_{max} = 28 \text{ Nm}$

 $My_{max} = 34 \text{ Nm}$ $Mz_{max} = 34 \text{ Nm}$ $f_v = \frac{12 \, N}{750 \, N} + \frac{60 \, N}{750 \, N} + \frac{0 \, Nm}{28 \, Nm} + \frac{16 \, Nm}{34 \, Nm} + \frac{3 \, Nm}{34 \, Nm} = 0.7 \le 1$

 $F_1/M_1 = dynamic value$ $F_2/M_2 = maximum value$

Expected service life

 $L = \frac{L_{ref}}{f_{r}^{3}} = \frac{5000 \ km}{0.7^{3}} = 14000 \ km$