
FESTO

Merkmale

Auf einen Blick

Eigenschaften

- Der Führungszylinder besteht aus einem frei positionierbaren Linearmotor, integriertem Wegmesssystem mit Magnetband und Referenzschalter
- Positionieren mit sehr hoher Dynamik möglich. Ohne Last sind Beschleunigungen von bis zu 80 m/s² möglich
- Mechanische Schnittstellen sind mit dem Führungszylinder DFM-B weitestgehend kompatihel
- Zusammen mit dem Motorcontroller SFC-LACI und den zugehörigen Leitungen, ein schnell in Betrieb zu nehmendes Positioniersystem für kleine Lasten

Einsatzbereiche

- Positionieren von kleinen Lasten wie beispielsweise:
 - Magazinieren oder Entmagazinieren von kleinen Teilen
 - Schnelles Sortieren von Teilen
- Für Bestückungs- und Montageprozesse

Alles aus einer Hand

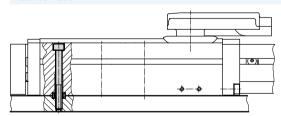
Motorcontroller SFC-LACI

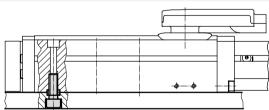
→ Internet: sfc-laci

Der Führungszylinder DFME-LAS und Motorcontroller SFC-LACI bilden eine Einheit.

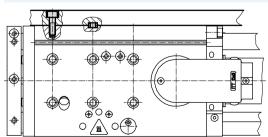
- Montage des SFC kann, durch Schutzart IP54, in der N\u00e4he des DFME erfolgen, wahlweise:
 - mit Mittenstützen
- mit Hutschiene
- Nur zwei Kabel zwischen Führungszylinder DFME und Motorcontroller SFC notwendig (Motor- und Encoderleitung)
- Motorcontroller SFC mit oder ohne Bedienfeld lieferbar
- Max. 31 Verfahrsätze Parametrierung über:
- Bedienfeld:
 - geeignet für einfache Positionsabläufe

Parametrierung über:

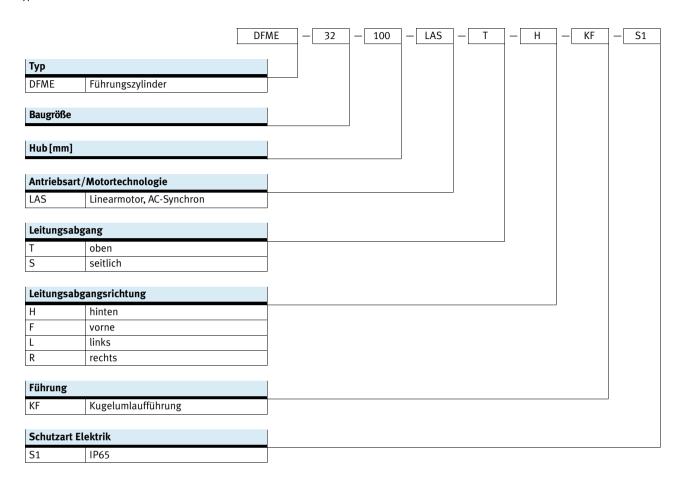

- Konfigurationspaket FCT (Festo Configuration Tool):
 - mit RS 232 Interface
 - PC-Oberfläche auf Windows, Festo Configuration-Tool
- Einfache Ansteuerung durch:
 - I/O-Anschaltung
 - PROFIBUS
 - CANopen, inklusiv "Interpolated position mode"
 - DeviceNet



Befestigungsmöglichkeiten

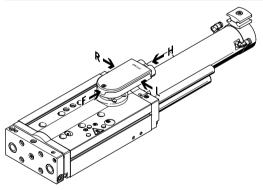

flach von oben

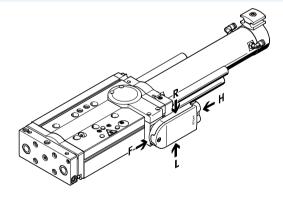
flach von unten


seitlich von unten

 ${\tt PROFIBUS}^{\circledR}, {\tt DeviceNet}^{\circledR}, {\tt CANopen}^{\circledR} \ \text{ist eine eingetragene Marke} \ \text{des jeweiligen Markeninhabers in bestimmten L\"{a}ndern}.$

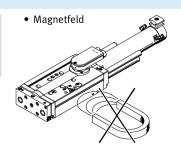
Führungszylinder DFME-LAS, elektrisch Typenschlüssel

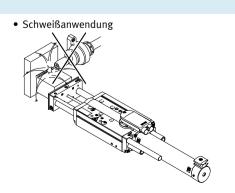

FESTO



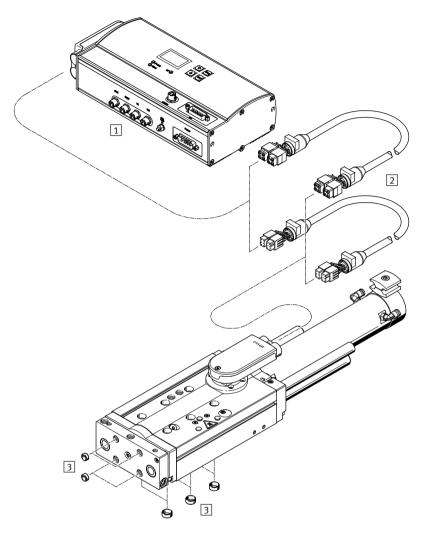
Leitungsabgangsrichtung

bei Leitungsabgang oben





Anwendungshinweis


Der Führungszylinder mit Linearmotor ist nicht für nachfolgende Anwendungsbeispiele ausgelegt:

Führungszylinder DFME-LAS, elektrisch Peripherieübersicht

Zub	ehör						
		Kurzbeschreibung	→ Seite/Internet				
1	Motorcontroller	zur Parametrierung und Positionierung der Führungszylinder	sfc-laci				
	SFC-LACI						
2	Motor-/Encoderleitung	zur Verbindung von Motor und Controller	sfc-laci				
	NEBM						
3	Zentrierhülse	zur Zentrierung von Lasten und Anbauteilen	16				
	ZBH						

Funktion

Baugröße 32, 40

Hublänge 100 ... 400 mm

Hinweis

Alle Werte beziehen sich auf die Normaltemperatur von 23 °C. Dynamik und Genauigkeit sind von der Montage (Steifigkeit) und Temperaturspannungen (Wärmestau) abhängig

www.festo.com

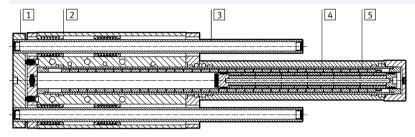
Reparaturservice

Allgemeine Technische Daten												
Baugröße		32			40							
Hub	[mm]	100	200	320	100	200	320	400				
mechanisch												
Konstruktiver Aufbau		Führungszyli	nder									
		elektrisch line	elektrisch linearer Direktantrieb									
Führung		Kugelumlauf	ührung									
Betriebsart der Antriebseinheit		Joch										
Befestigungsart		mit Innengew	inde und Zenti	rierhülse								
		mit Durchgan	gsbohrung un	d Zentrierhülse	!							
Einbaulage		waagrecht										
Hubreserve	[mm]	3,5										
Dauervorschubkraft ¹⁾	[N]	36	29	29	53	40	49	49				
Spitzenvorschubkraft ¹⁾	[N]	94	141	141	183	202	202	202				
Max. Nutzlast ²⁾	[kg]	2	6	4	3,4	6	6	6				
Max. Geschwindigkeit	[m/s]	2	3	3	2	3	3	3				
Wiederholgenauigkeit	[mm]	±0,015										
elektrisch												
Motorart		Linearer AC-S										
Wegmesssystem				n, inkremental,				-				
Spitzenstrom Motor	[A]	5,9	16,2	16,2	7,7	22,4	22,4	22,4				
Nennstrom Motor	[A]	2,2	3,3	3,3	2,2	4,4	5,4	5,4				
Nennleistung Motor	[W]	108	87	87	159	120	147	147				
Referenzierung		integrierter R	eferenzsensor									

¹⁾ Reibung unberücksichtigt

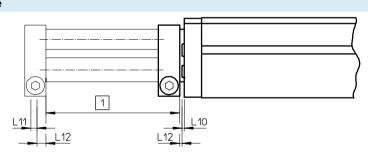
²⁾ Durch Motorleistung begrenzt. Die hier angegebenen Werte sind empfohlene Werte

Betriebs- und Umweltbedin	etriebs- und Umweltbedingungen									
Umgebungstemperatur [°C]		0 +40								
Max. Motortemperatur	[°C]	70 (Warnung bei 70°C, Abschaltung bei 75°C)								
Normaltemperatur ¹⁾	[°C]	23								
Temperaturüberwachung		Abschaltung bei Motorübertemperatur								
Schutzart (Mechanik)		IP40								
Schutzart (elektrischer Ansc	:hluss)	IP40 (bei DFMES1: IP65)								
CE-Kennzeichen		nach EU-EMV-Richtlinie								
(siehe Konformitätserklärun	g)									


¹⁾ Wenn nicht anders angegeben, beziehen sich alle Werte auf die Normaltemperatur.

Gewichte[g]												
Baugröße	32			40								
Hub	100	200	320	100	200	320	400					
Produktgewicht		4100	4900	5600	6300	7000	8200	8600				
Bewegte Masse	1030	1280	1500	1620	2060	2290	2520					

Werkstoffe

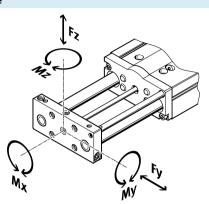

Funktionsschnitt

Füh	rungszylinder	
1	Jochplatte	Alu-Knetlegierung, eloxiert
2	Gehäuse	Alu-Knetlegierung, eloxiert
3	Führungsstange	Vergütungsstahl (randschichtgehärtet)
4	Kühlrohr	Alu-Knetlegierung, eloxiert
5	Kolbenstange	Hochlegierter Stahl, rostfrei
-	Klemmkasten	Zinkdruckguss
	Schrauben	Stahl
-	Werkstoff-Hinweis	LABS-haltige Stoffe enthalten
		RoHS konform

Hubreserve und Dämpfungslänge

1 Arbeitshub: Der empfohlene, zur Verfügung stehende, Arbeitsbereich Hubreserve: Der Abstand der Endlagen des Arbeitshubes zu den Puffern L10, L11 Dämpfungslänge: Abstand, Außenfläche der Puffer, bis zur mechanischen Endlage

Baugröße		Eingefahren		Ausgefahren			
		L12	L10	L12	L11		
32	[mm]	1,75	1,5	1,75	2		
40	[mm]	1,75	1,5	1,75	2		

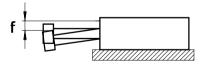

FESTO

Datenblat

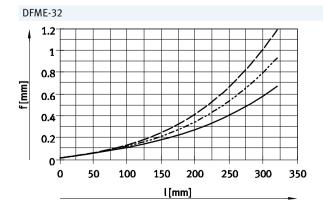
Dynamische Belastungskennwerte

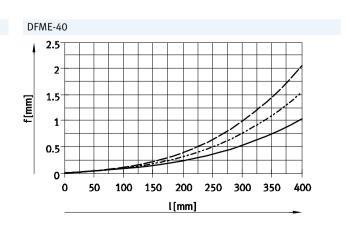
Die angegebenen Momente beziehen sich auf das Zentrum der Jochplatte.

Sie dürfen im dynamischen Betrieb nicht überschritten werden. Dabei muss besonders auf den Abbremsvorgang geachtet werden.


Wirken gleichzeitig mehrere der unten genannten Kräfte und Momente auf den Antrieb, müssen neben den aufgeführten Maximalbelastungen folgende Gleichung erfüllt werden:

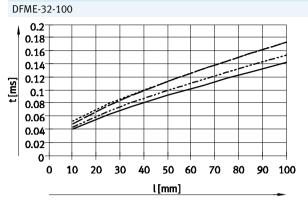
$$\frac{|Fy|}{Fy_{max.}} + \frac{|Fz|}{Fz_{max.}} + \frac{|Mx|}{Mx_{max.}} + \frac{|My|}{My_{max.}} + \frac{|Mz|}{Mz_{max.}} \leq 1$$

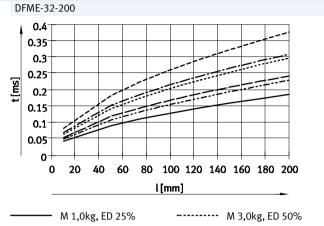

Zulässige Kräf	Zulässige Kräfte und Momente													
Baugröße		32			40	40								
Hub	[mm]	100	200	320	100	200	320	400						
Fy _{max.} , Fz _{max}	[N]	20	60	40	34	60	60	60						
Mx _{max} .	[Nm]	5	4	3	6,3	5,3	4,3	3,3						
My _{max} .	[Nm]	2	12	12	3,4	12	19	24						
Mz _{max} .	[Nm]	2	12	12	3,4	12	19	24						



Kolbenstangenauslenkung f, bei komplett ausgefahrener Kolbenstange, in Abhängigkeit des Hubs l

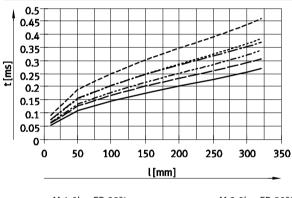
2 kg ----- 4 kg ----- 6 kg





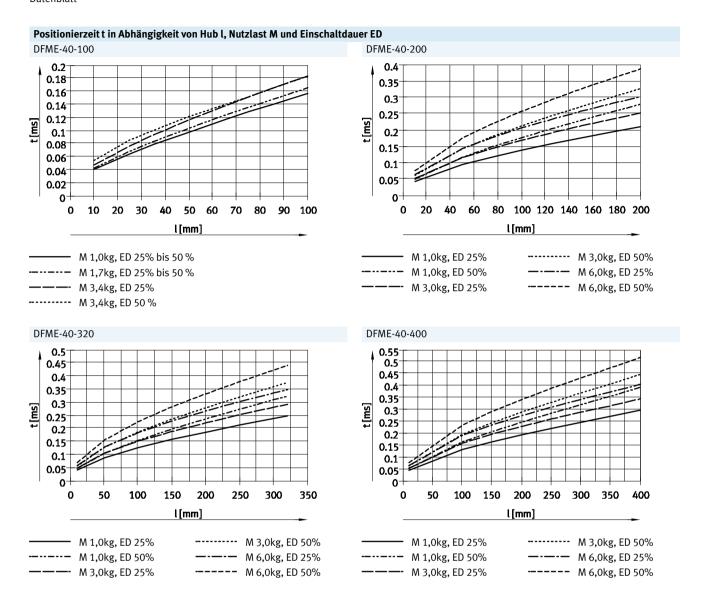
Datenblatt

Positionierzeit t in Abhängigkeit von Hub I, Nutzlast M und Einschaltdauer ED



M 0,5kg, ED 25% bis 50 %
 M 1,0kg, ED 25% bis 50 %
 M 2,0kg, ED 25%
 M 2,0kg, ED 50 %

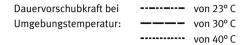
M 1,0kg, ED 25%
----- M 1,0kg, ED 50%
---- M 3,0kg, ED 25%

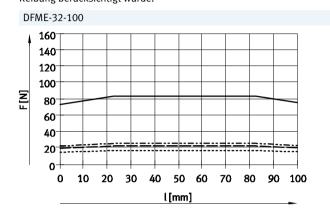

----- M 6,0kg, ED 25%
----- M 6,0kg, ED 50%

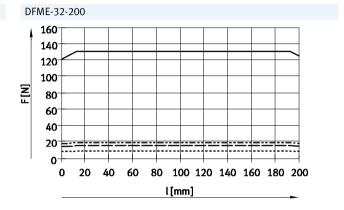
DFME-32-320

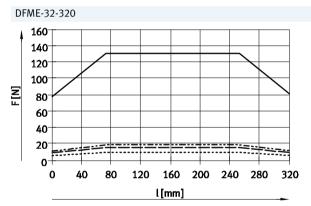
FESTO

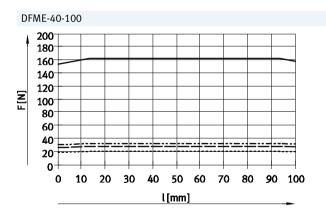
Datenblat

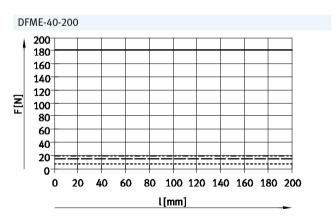


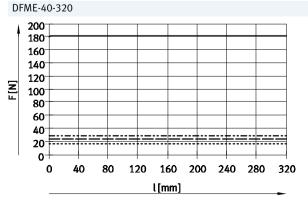

Datenblatt

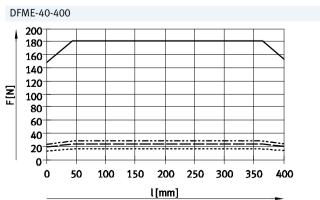

Vorschubkraft F in Abhängigkeit des Hubs l

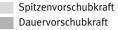

Die Diagramme beziehen sich auf Spitz praktische Werte, bei denen die Reibung berücksichtigt wurde.


Spitzenvorschubkraft

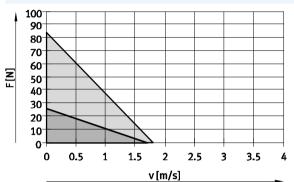




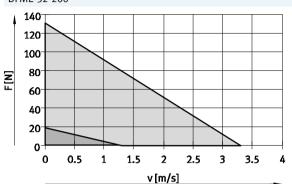


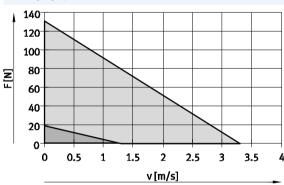


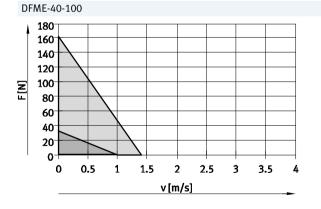
Datenblat


Vorschubkraft F in Abhängigkeit der Geschwindigkeit v

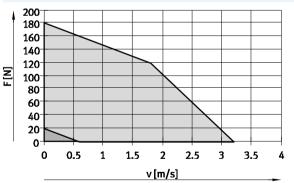
Die Diagramme beziehen sich auf praktische Werte unter folgenden Bedingungen:

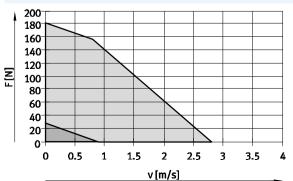

- Hubmitte des Elektrozylinders
- Reibung berücksichtigt
- Normaltemperatur von 23 °C
- Max. Motortemperartur von 70 °C

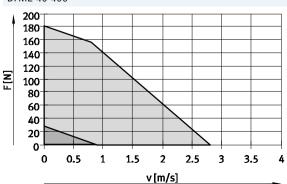


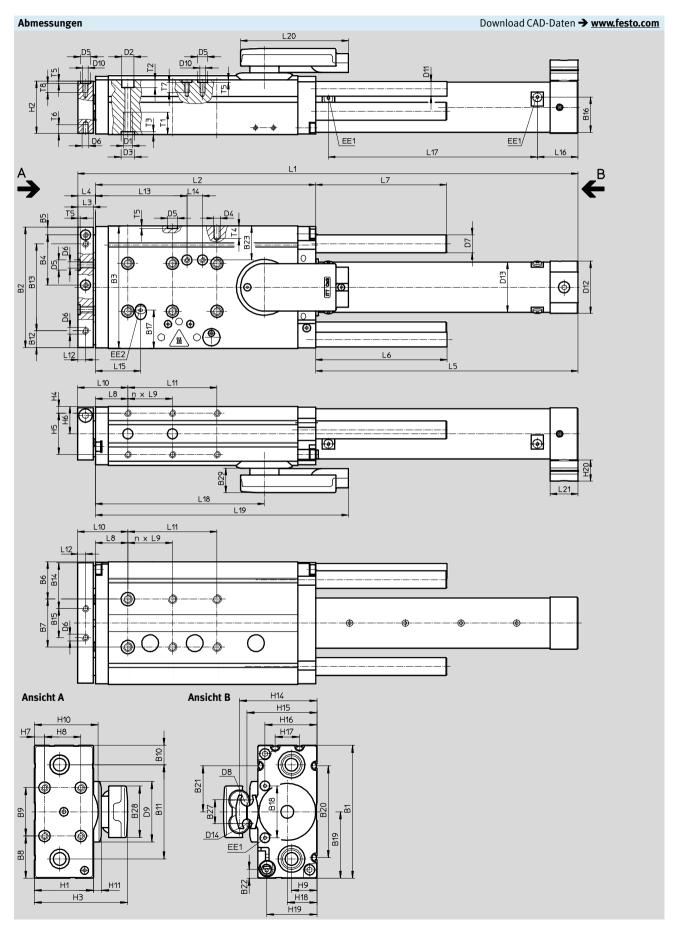


DFME-32-200

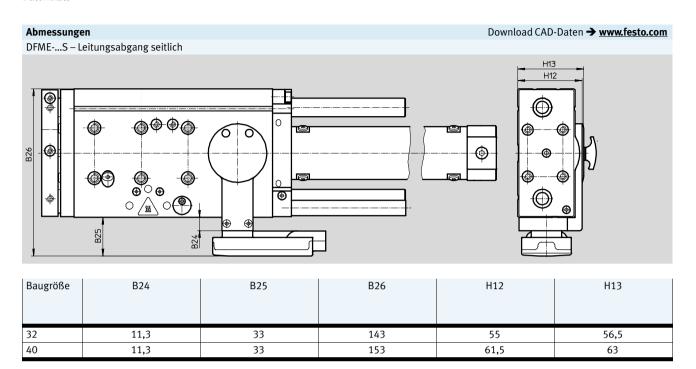





DFME-40-200


DFME-40-320

DFME-40-400

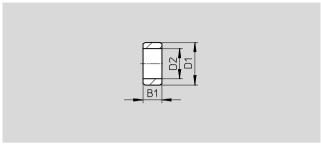


Baugröße	B1	B2	В3	B3 B4 ¹⁾ B5		Ве	5	B6 B7 ¹⁾ B8			B10	B11	B12	
32	110	108	109	45	7	33,	.5	43	35	40	16	78	15	
40	120	118	119	46	6,5	34,		51	35	50	16	88	15	
Baugröße	B13	B14	B15 ¹⁾	B16	B17	B1	8	B19 B20		B21	B22	B23	B27	
32	78	41	26	31,6	34,5	43	3	55	76	38	8	30,5	20	
40	88	41	36	33	36,6	45	5	60	76	39	8	30,5	20	
Baugröße	B28	B29	D1	D2 Ø	D3 Ø H7	D4	4 D5 D6 Ø H7		D6	D7 ∅	D8 Ø	D9 ∅	D10	
32	42,6	21,8	M8	11	12	Me	6	9	M6	16	10,5	50	M5	
40	42,6	21,8	M8	11	12	M	8	9	M6	16	10,5	50	M5	
Baugröße	D11 ∅	D12 ∅	D13 Ø	D14 Ø	EE1	EE	2	H1	H2	Н3	H4	H5 ¹⁾	Н6	
32	13,3	47	45	8	M5	M	7	49	47	77,3	6	37	24,5	
40	13,3	52	50,5	8	M5	M:	7	54	52	82,8	6	42	27	
Baugröße	H7	H8 ¹⁾	Н9	H10	H11	H1	4	H15	H16	H17	H18	H19	H20	
32	8,5	30	21	52,9	6,5	64,	.3	57,9	43	20	24,5	41,6	19	
40	10	30	26	59,5	8	70,		62,7 48,5		20	27	46	19	
Baugröße	L2	L3	L4 -1,75	L8	L9 ¹⁾	L1 -1,;			L12	L13	L14 ¹⁾	L15	L16	
32	197,5	14	16	29	40	45	5	80	7	82	14	40,5	36,5	
40	227,5	14	16	29	40	45		120	7	85	11,5	42,7	38,5	
Baugröße	L18	L19	L20	L21	n	T1	T2	T3		4 T		T7	Т8	
32	151,5	227	96,8	25	1	20	6,8					9	8	
40	181,5	257	96,8	25	2	20	6,8	2,6	1	6 2,	1 12	9	10	
Baugröße	Hub [mm]		L1 -1,75		L5			L6		Ľ	7	L1	7	
32	100		349		135,5			18		17	,7	87	,5	
	200		449		235,5			118		117		187		
	320		569		355,5			238		237		307,5		
40	100		423,5		180			18		16		12		
	200		523,5		280			118		110	5,7	227,8		
	320		643,5		400			238		236		347,8 427,8		
	400		723,5		480			318		316				

¹⁾ Toleranz für Zentrierbohrung $\pm 0,02$ mm Toleranz für Gewindebohrung $\pm 0,1$ mm

Führungszylinder DFME-LAS, elektrisch Bestellangaben – Produktbaukasten

augröße	32	Bedin- gungen	Code	Eintrag Code	
Baukasten-Nr.	562828	562829			
Funktion	Führungszylinder			DFME	DFME
Baugröße	32	40			
Hub [mm]	100	100			
	200	200			
	320	320			
	-	400			
Antriebsart	Linearmotor	·		-L	-L
Motortechnologie	AC-Synchron			AS	AS
Leitungsabgang	oben			-T	
	seitlich			-S	
Leitungsabgangsrichtung	hinten			-H	
	vorne			-F	
	links			-L	
	rechts			-R	
Führung	Kugelumlaufführung		-KF	-KF	
Schutzart Elektrik	IP65			-S1	


Übertrag Bes	Übertrag Bestellcode																	
	DI	FME	-		-		-	L		AS	-		-		-	KF	-	

Zentrierhülse ZBH

Werkstoff: Stahl, hochlegiert

Abmessungen und Bestella	ngaben						
B1	D1	D2	KBK ¹⁾	Gewicht	Teile-Nr.	Тур	PE ²⁾
	Ø	Ø					
-0,2	h7			[g]			
4	9	6,4	2	1	150927	ZBH-9	10
5	12	10,3	2	1	189653	ZBH-12	10

¹⁾ Korrosionsbeständigkeitsklasse KBK 2 nach Festo Norm FN 940070 Mäßige Korrosionsbeanspruchung. Innenraumanwendung bei der Kondensation auftreten darf. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die in direktem Kontakt zur umgebenden industrieüblichen Atmosphäre stehen.
 Packungseinheit in Stück