
FESTO

Toberas de aspiración

FESTO

Características

Cuadro general de productos

Generador de vacío

Todos los generadores de vacío de Festo son de una fase y funcionan de acuerdo al principio Venturi. Los productos descritos a continuación fueron concebidos para las aplicaciones más diversas. Los productos están clasificados según varias clases de rendimiento, por lo que puede elegirse siempre el eyector óptimo para cada aplicación.

Eyectores básicos e Inline

VN-...

Hojas de datos → Internet: vn

- Diámetro nominal
 0,45 ... 3 mm
- Vacío máx.93%
- Temperatura 0 ... +60 °C
- Utilización de eyectores muy eficientes en la zona de trabajo
- Disponible en forma recta o en forma de T
- Montaje en espacios reducidos
- Solución económica
- Sin piezas expuestas a desgaste
- Tiempo de evacuación extremadamente corto
- Opcionalmente con vacuostato
- Opcionalmente con funciones adicionales:
 - Impulso integrado de expulsión
 - Activación eléctrica para vacío ON/OFF
- Combinación de impulso de expulsión y activación

VAD-.../VAK-... Hojas de datos → Internet: vad

- Diámetro nominal 0,5 ... 1,5 mm
- Vacío máx. 80%
- Temperatura -20 ...+80 °C
- Eyectores robustos con cuerpo de aluminio
- VAK-...: volumen integrado,
 VAD-...: Conexión para volumen externo
- No precisa mantenimiento
- VAK-...: Colocación fiable de las piezas

Toberas de aspiración Características

→ 8

Eyectores compactos

VADM-.../VADMI-...

- Diámetro nominal 0,45 ... 3 mm
- Vacío máx. 84%
- Temperatura 0 ... +60 °C

- Diseño compacto
- Montaje muy sencillo
- Tiempo de respuesta corto
- Electroválvula integrada (Conexión/Desconexión)
- VADMI-...: Electroválvula adicional integrada para el impulso de expulsión
- Filtro con indicación

- Opcionalmente con función economizadora de aire
- Opcionalmente con vacuostato
- Colocación fiable de las piezas

VAD-M-.../VAD-M...-I-...

3

- Diámetro nominal 0,7 ... 2 mm
- Vacío máx. 85%
- Temperatura 0 ... +40 °C

- Diseño compacto
- Montaje muy sencillo
- Tiempo de respuesta corto
- Electroválvula integrada (Conexión/Desconexión)
- VAD-M-I-...: Electroválvula adicional integrada para el impulso de expulsión
- Colocación fiable de las piezas

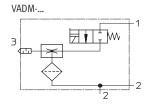
Características

FESTO

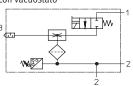
Cuadro general

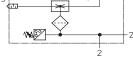
- Ejecución compacta y robusta
- Componentes con varias funciones individuales forman una sola unidad
- Tiempos de conmutación muy cortos mediante electroválvulas integradas
- No son necesarios componentes externos adicionales
- Montaje versátil mediante patrón estándar. En consecuencia, especialmente adecuado para tareas de manipulación
- Montaje sencillo: la electroválvula, el eyector y el silenciador forman una sola unidad
- Clase de protección IP65
- Con accionamiento auxiliar manual
- Con silenciador para reducir el nivel de ruidos del aire de escape
- Con un filtro para el aire de escape y una mirilla para observar el grado de colmatación del filtro
- Sin o con vacuostato para controlar el vacío, con salida PNP o NPN
- Con 2 conexiones para vacío

Tobera de aspiración VADM-.../-...-P/-N


En estas toberas, la alimentación de aire comprimido es controlada por la electroválvula integrada.

Una vez aplicada la tensión, la válvula conmuta y el aire comprimido que fluye de 1 (P) hacia 3 (R) genera un vacío en la conexión 2 (V) debido al efecto eyector.


Al desconectar la tensión se interrumpe el proceso de aspiración. El nivel de ruido ocasionado por el aire de escape es mínimo gracias al silenciador integrado.


- Electroválvula integrada para
- Conexión/desconexión del vacío

En las toberas de aspiración VADM-...-P/N puede controlarse el vacío mediante vacuostato.

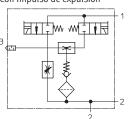
VADM-...-P/-N con vacuostato

- 1 = Conexión de presión
- 2 = Conexión de vacío
- 3 = Escape de aire

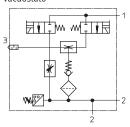
Tobera de aspiración VADMI-.../-...-P/-...-N con impulso de expulsión y vacuostato

Al recibir una señal la electroválvula integrada, el aire comprimido fluye a través de la tobera generando un vacío.

Al desconectar la tensión en la válvula generadora de vacío y aplicar tensión en la válvula de expulsión, el vacío se reduce más rápido al aplicar presión en la conexión 2.


El nivel de ruido ocasionado por el aire de escape es mínimo gracias al silenciador integrado.

- Dos electroválvulas para
 - Conexión/desconexión del vacío
- Impulso de expulsión
- Con conexión para detección del estado
- Con válvula antirretorno integrada (función de seguridad)


Con las toberas de aspiración VADMI-...-P/-N puede controlarse el vacío mediante vacuostato.

VADMI-...

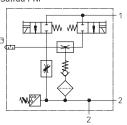
Con impulso de expulsión

VADMI-...-P/-N con impulso de expulsión y vacuostato

- 1 = Conexión de presión
- 2 = Conexión de vacío
- 3 = Escape de aire

FESTO

Características

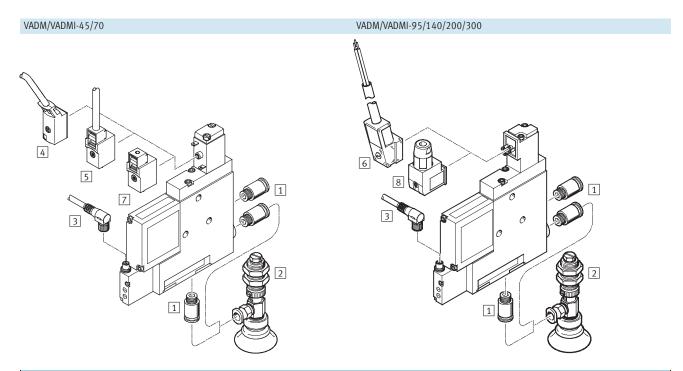

Tobera de aspiración VADMI-...-LS-P/N con impulso de expulsión, vacuostato y función de ahorro de aire

La construcción de este generador de vacío es idéntica a la de los demás tipos VADMI. Este explusor tiene, adicionalmente, un vacuostato con función de ahorro del consumo de airo.

Si el vacío es inferior al valor ajustado previamente, se pone en funcionamiento automáticamente el expulsor (funcionamiento de expulsores VADMI-...-LS-P/N → 13).

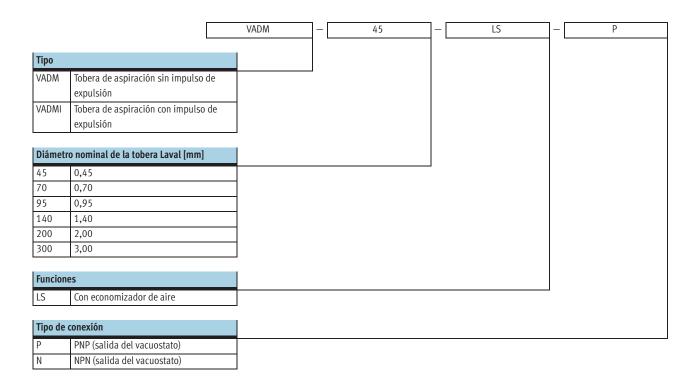
- Electroválvula para generación de vacío
- Silenciador integrado
- Filtro integrado de 40 µm con indicación del grado de colmatación
- Con conexión para detección del estado para mensaje de fallo
- Con válvula antirretorno integrada (función de seguridad)
- Con vacuostato para controlar la presión
- Con dos conexiones para vacío

VADM-...-LS-P/N Con economizador de aire Salida PNP



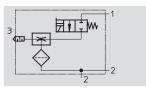
- 1 = Conexión de presión
- 2 = Conexión de vacío
- 3 = Escape de aire

Toberas de aspiración VADM/VADMI Cuadro general de periféricos


FESTO

Elen	nentos de fijación y accesorios			
		VADM/VADMI-45/70	VADM/VADMI-95/140/200/300	→ Página/Internet
1	Racor rápido roscado	_	_	quick star
	QS	•	-	
2	Conjunto de aspiración	•	_	esg
	ESG	_	-	
3	Cable		•	nebu-m8
	NEBU-M8	_	_	
4	Conector tipo zócalo con cable		_	kmyz-2
	KMYZ-2	_		
5	Conector tipo zócalo con cable		_	kmyz-4
	KMYZ-4	_		
6	Conector tipo zócalo con cable	_	•	kmeb-2
	KMEB-2		_	
7	Conector tipo zócalo		_	mssd-zbzc
	MSSD-ZBZC	_		
8	Conector tipo zócalo	_	•	mssd-e
	MSSD-E		_	
-	Elemento de fijación		•	esh
	ESH	_	_	
-	Ventosa con rosca de fijación		•	ess
	ESS	_		
-	Junta reflectante	_	•	me-ld
	ME-LD		_	

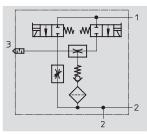
Toberas de aspiración VADM/VADMI Código para el pedido

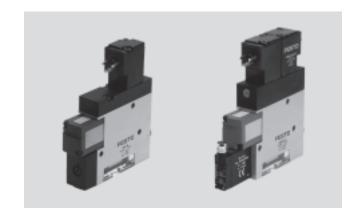


Combinaciones posibles: consultar las referencias para efectuar el pedido.

Toberas de aspiración VADM/VADMI Hoja de datos

FESTO

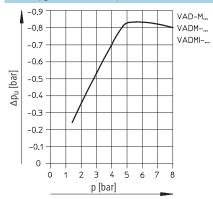




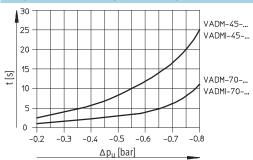
Presión de funcionamiento 1,5 ... 8 bar

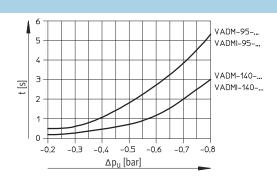
Datos técnicos generales											
Diámetro nominal		45	70	95	140	200	300				
Construcción		En forma de T									
Fluido		Aire comprimido filtrado sin lubricar; grado de filtración de 40µm									
Posición de montaje		Indistinta									
Característica del expulsor		Alto vacío									
Tipo de fijación		Indistintamente con rosca interior, con taladro pasante									
Conexión neumática 1/2		M5/M5	M5/G ¹ /8	G1/8/G1/8	G1/8/G1/4	G1/4/G3/8	G1/4/G3/8				
Diámetro nominal de la tobera	[mm]	0,45	0,7	0,95	1,4	2,0	3,0				
Laval											
Presión de funcionamiento	[bar]	1,5 8		2 8							
Tiempo de utilzación	[%]	100		•							
Consumo	[W]	1,4		1,5 servopilotada							
Clase de protección		IP65		•							

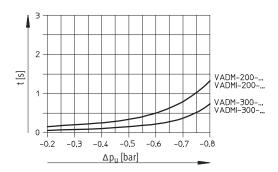
^{∥ ·} Importante: Este producto cumple con los estándares ISO 1179-1 e ISO 228-1


Condiciones del entorno											
Diámetro nominal	45	70	95	140	200	300					
Temperatura ambiente [°C]	-0 +60	+60									
Materiales	Sin cobre ni PTFE ni	in cobre ni PTFE ni silicona									
Autorización	c UL us - Recognized (OL)										

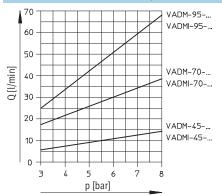
Pesos [g]						
Diámetro nominal	45	70	95	140	200	300
VADM	60	140	210	290	320	340
VADMP/-N	65	145	220	300	330	350
VADMI	85	170	240	320	350	370
VADMIP/-N/-LS-P	90	180	250	330	360	380

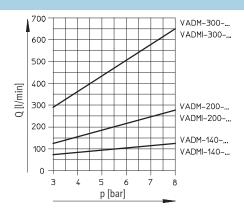

FESTO


Hoja de datos

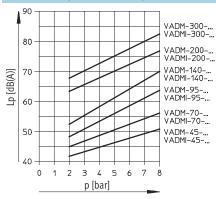

Vacío Δp_u en función de la presión de funcionamiento p

Tiempo de evacuación t [s] para 1 litro con presión de funcionamiento de 6 bar

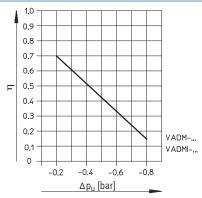

Tiempo de evacuación para volumen de	1 litro con presión de funcionamiento de	6 bar ¹⁾	
Tipo	Con impulso de expulsión	Sin impulso de expulsión	Caudal máx.
	[s]	[s]	[l/min]
VADM-45	-	5,9	-
VADMI-45	1,9	-	21
VADM-70	-	2,2	-
VADMI-70	0,59	-	48
VADM-95	-	1,18	-
VADMI-95	0,24	-	104
VADM-140	-	0,69	-
VADMI-140	0,19	-	265
VADM-200	-	0,29	-
VADMI-200	0,15	-	260
VADM-300	-	0,26	-
VADMI-300	0,2	-	250

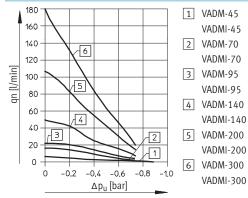

¹⁾ Tiempo necesario para generar un vacío de -0,75 bar partiendo de -0,05 bar.

FESTO


Hoja de datos

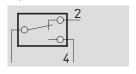
Consumo de aire Q en función de la presión de funcionamiento p

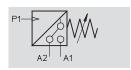



Nivel de ruido Lp en función de la presión de funcionamiento p (sin caudal de aspiración)

Grado de eficiencia η en función del vacío Δp_u con $P_{nom.}$ 6 bar

Caudal de aspiración qn en función del vacío Δp_u

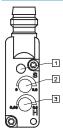



Toberas de aspiración VADM/VADMI Hoja de datos

FESTO

Vacuostato para tobera de aspiración VADM...-...-P/N

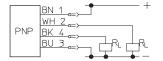
Esquema de conexiones


- Vacuostato piezorresistivo con punto de conmutación e histéresis ajustables
- Indicación del estado de conmutación mediante LED amarillo
- Conexión eléctrica con polos inconfundibles

Datos técnicos generales		
Datos neumáticos		
Margen de presión máx.	[bar]	00,95
Punto de conmutación	[bar]	00,9 (ajustable)
Histéresis	[bar]	0,05 0,5 (ajustable)
Influencia de la temperatura		≤±5 mbar/10K (en el punto de conmutación)
Datos eléctricos		
Tensión de funcionamiento	[V DC]	24 (15 30)
Caída de tensión	[V]	1,2 (en la salida de conexión)
Corriente en la salida de conexión	[mA]	130
Consumo interno máx.	[mA]	25
Retardo máx. de conmutación	[ms]	5
Conexión		Con polos inconfundibles
Datos mecánicos		
Función		Vacuostato piezorresistivo con punto de conmutación e histéresis ajustables
Condiciones ambientales		
Clase de protección		IP65

Condiciones del entorno	
Temperatura ambiente [°C]	-0 +60
Materiales	Sin cobre ni PTFE ni silicona
Marcado CE	Según directiva UE para CEM
(ver declaración de conformidad)	
Autorización	c UL us - Recognized (OL)
	C-Tick

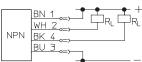
Panel de mando del vacuostato


- 1 Indicación del estado de conmutación mediante LED amarillo
- 2 Ajuste del punto de conmutación
- 3 Ajuste de la histéresis

Hoja de datos

FESTO

Ocupación de las conexiones


Salida PNP

Salida NPN

BU = azul

R_L = carga

Ocupación de pines

Marrón: polo positivo

Blanco: contacto normalmente cerrado

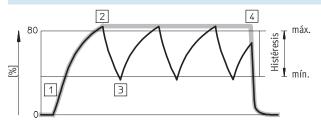
3 Azul: polo negativo 4 Negro: contacto norma

contacto normalmente abierto

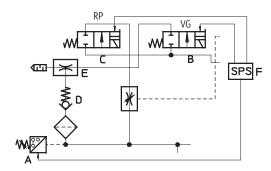
BN = marrón

WH = blanco

BK = negro


Función de ahorro de energía con VADMI-...-P/N

La conexión de vacío convencional


Una medida económica para ahorrar energía

En las toberas VADMI se ajusta primero un valor máximo y, a continuación, se regula la histéresis (margen de funcionamiento seguro). El límite inferior corresponde al valor mínimo. La pieza se transporta de modo fiable mientras el vacío se encuentra dentro este margen. La tobera VADMI sólo se activa mediante la unidad de control externa si el nivel baja por debajo del valor mínimo y se vuelve a desactivar una vez que se alcanza el valor máximo. Durante la fase inactiva, una válvula antirretorno evita la reducción del nivel de vacío.

Secuencias del funcionamiento

Evolución óptima del vacíoEvolución real del vacío

- RP Impulso de expulsión
- VG Vacío conexión/desconexión
- E Generador de vacío
- D Válvula antirretorno
- A Vacuostato

Vacío conectado

- 1 La unidad de control externa F activa la bobina VG
 - → Válvula abierta para la alimentación de aire B
 - → Activación de la generación de vacío E

Desconexión de la generación de vacío

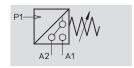
- 2 Se alcanzó el nivel máximo antes definido:
 - → El sensor de presión A emite una señal a la unidad de control externa
 - → La unidad de control desconecta la bobina VG
 - → Se interrumpe la generación de vacío
 - → La válvula antirretorno evita una reducción del nivel de vacío

Vacío conectado

- 3 Una fuga provoca la caída del nivel de vacío hasta el nivel mínimo
 - → El sensor de presión A emite una señal a la unidad de control externa F
 - → La unidad de control F vuelve a activar la bobina VG
 - → Activación de la generación de vacío E
 - → Repetición constante de los puntos 2 y 3

Finalización del ciclo: Desconexión del vacío

- 4 Finalización del proceso de transporte
 - → La unidad de control externa (PLC) F desactiva la bobina BG B
 - → Finaliza la generación de vacío E
 - → La unidad de control desconecta la bobina RP C
 - → Nivel de vacío en 0
 - → Colocación de la pieza


Toberas de aspiración VADM/VADMI Hoja de datos

FESTO

Vacuostato y cables para toberas de aspiración con función de ahorro de consumo de aire VADMI-...-LS-P/N

Esquema de conexiones

- Vacuostato piezorresistivo con punto de conmutación e histéresis ajustables
- Función de ahorro de aire sólo en combinación con el cable incluido en el suministro
- Indicación del estado de conmutación mediante LED amarillo
- Conexión eléctrica con polos in confundibles

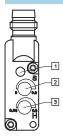
Datos técnicos generales		
Datos neumáticos		
Margen de presión máx.	[bar]	0 1
Presión máx. de sobrecarga	[bar]	5 (para t <1 min)
Punto de conmutación	[bar]	00,9 (ajustable)
Histéresis	[bar]	0,1 0,6 (ajustable)
Influencia de la temperatura		≤ ± 10 mbar/10K (en el punto de conmutación)
Datos eléctricos		
Tensión de funcionamiento	[V DC]	24 V (±10%, con VADMI-70-LS-P +10%–5%)
Caída de tensión	[V]	1,2 (en la salida de conexión)
Corriente en la salida de	[mA]	130
conexión		
Consumo interno máx.	[mA]	25
Retardo máx. de conmutación	[ms]	2 (con derivador NPN: 20 ms)
Conexión		Con polos inconfundibles
Datos mecánicos		
Función		Vacuostato piezorresistivo con función de ahorro de consumo de aire
Condiciones ambientales		
Clase de protección	_	IP65

Condiciones del entorno							
Temperatura ambiente [°C]	-0 +60						
Materiales	Sin cobre ni PTFE ni silicona						
Marcado CE	Según directiva UE para CEM						
(ver declaración de conformidad)							
Autorización	c UL us - Recognized (OL)						
	C-Tick						

Hoja de datos

Funcionamiento

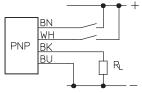
La tobera de aspiración VADMI-...-LS-P/N, combinada con el conjunto de cables incluido en el suminsitro, tiene una función de ahorro de consumo de aire. Con dos potenciómetros se regula en el vacuostato el nivel de vacío necesario para sujetar la pieza. El interruptor genera una señal intermitente A2, con lo que la electroválvula para la conexión/desconexión del vacío sólo reacciona si el vacío es inferior a un límite determinado (por ejemplo, en caso de fugas).


Si el vacío no baja de un límite determinado, se mantiene el vacío mediante la válvula antirretorno y sin que se ponga en funcionamiento el expulsor. Adicionalmente es posible consultar una señal A1 que en funcionamiento normal es de +24 V y que cambia a 0 si el vacío supera en 150 mbar el valor crítico a causa de un fallo.

Este problema puede surgir si la pieza se cae de la ventosa, por lo que ya no es posible generar el vacío necesario. Accesorios (incluidos en el suministro):

Cable de conexión
 El interruptor sólo debe conectarse
 a los cables incluidos en el
 suministro.

No obstante, es posible intercambiar las conexiones 1, 2 y 4 sin dañar el equipo.


Panel de mando del vacuostato

- 1 Indicación del estado de conmutación mediante LED amarillo
- 2 Ajuste del punto de conmutación
- 3 Ajuste de la histéresis

Ocupación de las conexiones

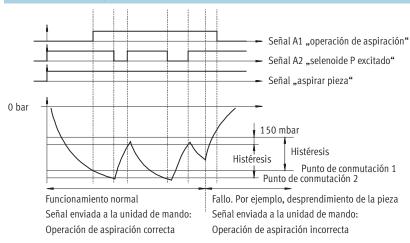
Salida PNP

Salida NPN

BN RL

NPN WH
BU

BN = marrón WH = blanco BK = negro BU = azul R_L = carga Ocupación de pines



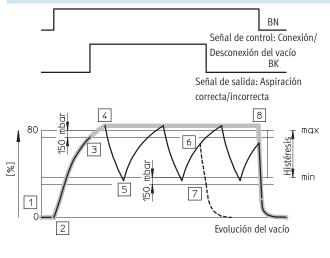
1 Marrón: polo positivo 2 Blanco: contacto normalmente cerrado

3 Azul: polo negativo4 Negro: contacto normal-

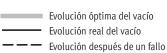
mente abierto

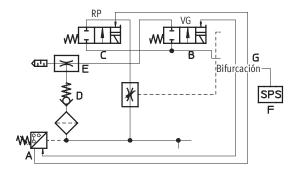
Puntos de conmutación / Histéresis

Hoja de datos


Función de ahorro de energía con VADMI-...-LS-P/N

El perfeccionamiento del sistema de vacío


Además de las funciones descritas, se agrega una función que también se controla mediante el vacuostato. Si una ventosa no sujeta correctamente una pieza o si revienta un tubo flexible, el vacuostato envía la señal correspondiente a la unidad de control externa (PLC) F para que ésta o el operario activen las funciones que correspondan.


Con esta función centralizada se puede prescindir de una activación externa de la generación de vacío (sistema de ahorro de aire). Además, de este modo también el cableado es mucho más sencillo.

Secuencias del funcionamiento

- RP Impulso de expulsión
- VG Vacío conexión/desconexión
- E Generador de vacío
- D Válvula antirretorno
- C Impulso de expulsión
- G Bifurcación
- A Vacuostato

Señal de activación

- 1 La unidad de control externa F activa el sensor de presión
 - → El sensor de presión A controla el nivel de vacío
 - → No hay vacío

Vacío conectado

- 2 El sensor de presión activa la bobina VG B
 - → Válvula abierta para la alimentación de aire
 - → Activación de la generación de vacío E
- 3 El nivel de vacío supera 150 mbar por debajo del nivel máximo
 - → El sensor de presión envía una señal de activación a la unidad de control externa (PLC) F BK
 - → Empieza la operación de transporte

Desconexión de la generación de vacío

- 4 Se alcanzó el nivel máximo antes definido
 - → El sensor de presión A desconecta la bobina VG
 - → Desconexión de la alimentación de aire comprimido
 - → Se interrumpe la generación de vacío E
 - → La válvula antirretorno evita una reducción del nivel de vacío

Vacío conectado

- 5 Una fuga provoca la caída del nivel de vacío hasta el nivel mínimo
 - → El sensor de presión A vuelve a conectar la bobina VG
 - → Activación de la generación de vacío E

Fallo: Detención de la operación de transporte

- [6] Una gran fuga produce una caída considerable del nivel de vacío
 - → El generador de vacío E no es capaz de compensar la caída de presión
- [7] El nivel de vacío cae 150 mbar por debajo del nivel mínimo
 - → El sensor de presión envía una señal de activación a la unidad de control externa (PLC) F BK
 - → La unidad de control externa interrumpe la operación de transporte
 - → Finaliza la generación de vacío E

Finalización del ciclo: Desconexión del vacío

- 8 Finalización de la operación de transporte
 - → La unidad de control externa (PLC) F desactiva la bobina VG
 - → Finaliza la generación de vacío E
 - → La unidad de control F desconecta la bobina RP C WH
 - → Activación del impulso de expulsión
 - → Colocación de la pieza

FESTO

Hoja de datos

Conexión con el PLC

Conexión PNP y NPN de la tobera VADMI-...-LS-P/N

Los tres mazos de cables para el control y la alimentación se unen directamente en la bifurcación encima del generador de vacío, con lo que sólo es necesario llevar un cable con un hilo de transmisión de señales y tres hilos de alimentación de tensión hacia el PLC.

En principio existen señales de dos características diferentes en las unidades de control (PLC) externas para las toberas de aspiración VADMI-LS; ambas se diferencian muy poco. Considerando que las dos versiones de generadores de vacío y de vacuostatos son idénticas, las señales sólo se convierten en la bifurcación.

Los modelos únicamente se diferencian en la bifurcación.

Los conectores tipo clavija, debidamente identificados, se conectan a los correspondientes elementos de la VADMI-LS. El cable de cuatro hilos proveniente de la bifurcación se conecta a la unidad de control tal como se indica a continuación.

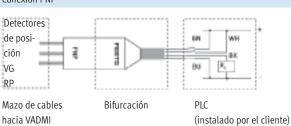
VADMI-...

VADMI Sin vacío

VADMI-...-P/N

VADMI Con vacío

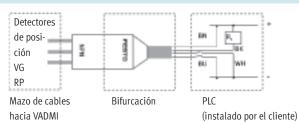
VADMI-...-P/N-LS



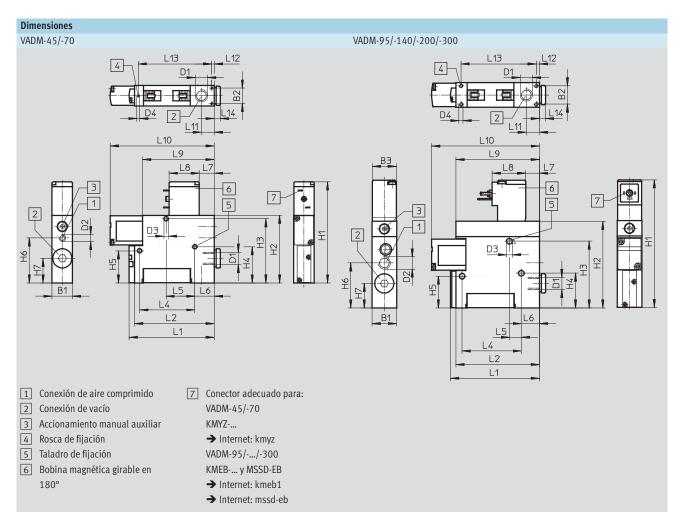
VADMI Con economizador de aire

Cable de cuatro hilos

Conexión PNP


BN = Marrón para la generación de vacío VG

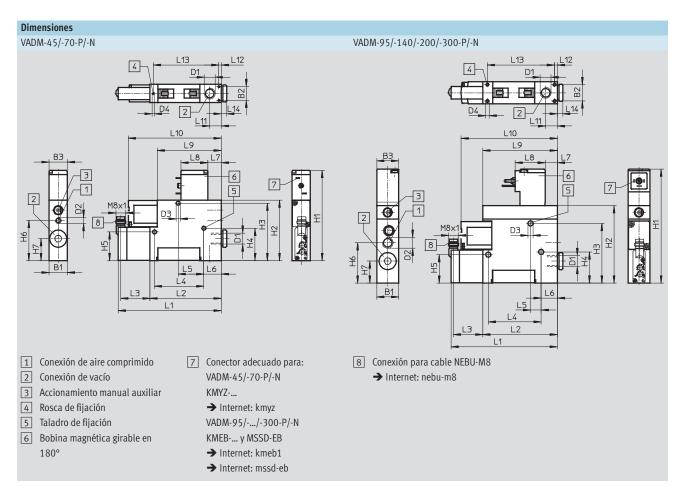
WH = Blanco para el impulso de expulsión RP


BK = Negro hacia la unidad consumidora R_L (PLC)

BU = Azul para masa

Conexión NPN

FESTO

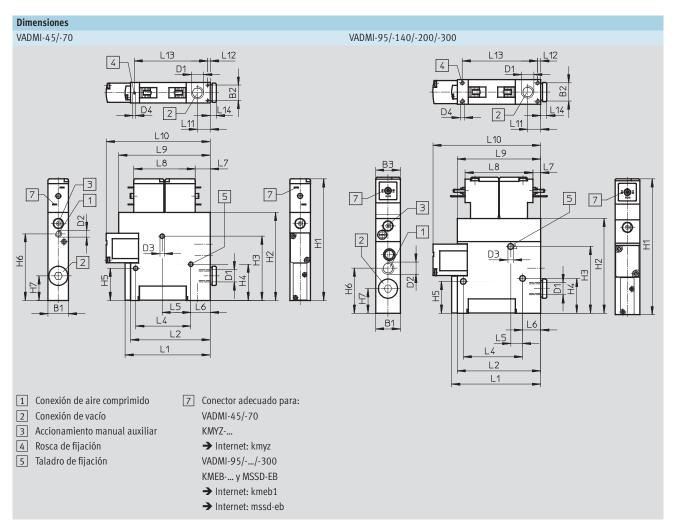


Tipo	B1	B2	В3	D1	D2	D3 Ø	D4	H1	H2	Н3	H4	H5	Н6	H7
VADM-45	10	6,2	-	M5	M5	3,2	M2	64,4	44,4	40,8	23,8	23,8	29,6	18
VADM-70	15	11,2	-	G1/8	M5	3,2	M2	73,9	49,4	47	26,5	23,5	32,9	18
VADM-95	18	13,4	18	G1/8	G1/8	4,2	M2,5	93,4	63,4	48,9	25,5	23,3	33	18
VADM-140	22	16,6	18	G1/4	G1/8	5,2	M3	107,4	77,4	61,4	41,4	41,4	36	17,5
VADM-200	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19
VADM-300	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19

Tipo	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45	45	41	33,6	25	3,6	11	16	41	56	7,9	1,9	36,3	4
VADM-70	62,3	58,3	40,4	21	14,2	11	22	52,4	76,1	9,4	1,9	53,7	4,5
VADM-95	65	61	43,3	8,7	13,2	9,7	24,5	61	78,8	9,5	2,3	55	4,5
VADM-140	88	84	26	12,5	28,5	9,7	24,5	61	96,8	13,8	2,3	79,4	5
VADM-200	88	84	26	12,5	28,5	9,7	24,5	61	101,8	12,5	2,3	79,4	5
VADM-300	124,4	120,4	26	12,5	28,5	9,7	24,5	61	137,4	12,5	2,3	115,8	5

 $[\]parallel\cdot\parallel$ Importante: Este producto cumple con los estándares ISO 1179-1 e ISO 228-1

FESTO

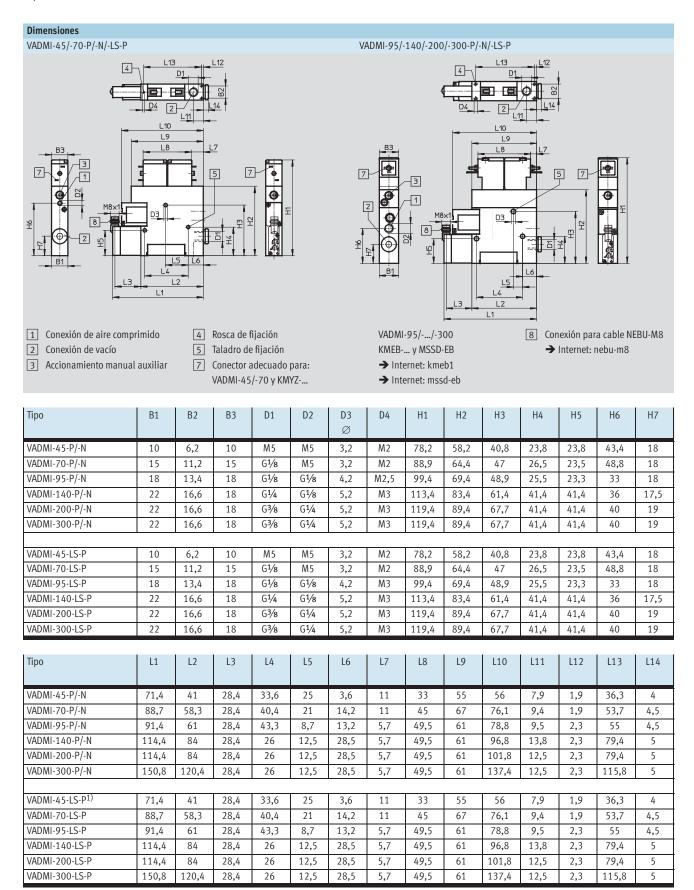


Tipo	B1	B2	В3	D1	D2	D3	D4	H1	H2	Н3	H4	H5	Н6	H7
						Ø								
VADM-45-P/-N	10	6,2	10	M5	M5	3,2	M2	64,4	44,4	40,8	23,8	23,8	29,6	18
VADM-70-P/-N	15	11,2	15	G1/8	M5	3,2	M2	73,9	49,4	47	26,5	23,5	32,9	18
VADM-95-P/-N	18	13,4	18	G1/8	G1/8	4,2	M2,5	93,4	63,4	48,9	25,5	23,3	33	18
VADM-140-P/-N	22	16,6	18	G1/4	G1/8	5,2	M3	107,4	77,4	61,4	41,4	41,4	36	17,5
VADM-200-P/-N	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19
VADM-300-P/-N	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19

Tipo	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45-P/-N	71,4	41	28,4	33,6	25	3,6	11	16	41	56	7,9	1,9	36,3	4
VADM-70-P/-N	88,7	58,3	28,4	40,4	21	14,2	11	22	52,4	76,1	9,4	1,9	53,7	4,5
VADM-95-P/-N	91,4	61	28,4	43,3	8,7	13,2	9,7	24,5	61	78,8	9,5	2,3	55	4,5
VADM-140-P/-N	114,4	84	28,4	26	12,5	28,5	9,7	24,5	61	96,8	13,8	2,3	79,4	5
VADM-200-P/-N	114,4	84	28,4	26	12,5	28,5	9,7	24,5	61	101,8	12,5	2,3	79,4	5
VADM-300-P/-N	150,8	120,4	28,4	26	12,5	28,5	9,7	24,5	61	137,4	12,5	2,3	115,8	5

 $[\]parallel$ Importante: Este producto cumple con los estándares ISO 1179-1 e ISO 228-1

FESTO



Tipo	B1	B2	В3	D1	D2	D3	D4	H1	H2	Н3	H4	H5	Н6	H7
						Ø								
VADMI-45	10	6,2	-	M5	M5	3,2	M2	78,2	58,2	40,8	23,8	23,8	43,4	18
VADMI-70	15	11,2	-	G1/8	M5	3,2	M2	88,9	64,4	47	26,5	23,5	48,8	18
VADMI-95	18	13,4	18	G1/8	G1/8	4,2	M2,5	99,4	69,4	48,9	25,5	23,3	33	18
VADMI-140	22	16,6	18	G1/4	G1/8	5,2	M3	113,4	83,4	61,4	41,4	41,4	36	17,5
VADMI-200	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19
VADMI-300	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19

Tipo	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADMI-45	45	41	33,6	25	3,6	11	33	55	56	7,9	1,9	36,3	4
VADMI-70	62,3	58,3	40,4	21	14,2	11	45	67	76,1	9,4	1,9	53,7	4,5
VADMI-95	65	61	43,3	8,7	13,2	5,7	49,5	61	78,8	9,5	2,3	55	4,5
VADMI-140	88	84	26	12,5	28,5	5,7	49,5	61	96,8	13,8	2,3	79,4	5
VADMI-200	88	84	26	12,5	28,5	5,7	49,5	61	101,8	12,5	2,3	79,4	5
VADMI-300	124,4	120,4	26	12,5	28,5	5,7	49,5	61	137,4	12,5	2,3	115,8	5

 $^{\|\}cdot\|$ Importante: Este producto cumple con los estándares ISO 1179-1 e ISO 228-1

FESTO

¹⁾ El tipo ... -LS- ... incluye los conectores en el suministro.

Importante: Este producto cumple con los estándares ISO 1179-1 e ISO 228-1

Toberas de aspiración VADM/VADMI Hoja de datos

Referencias											
Tamaño	Bobinas	sin vacuostato	con vacuostato	con vacuostato							
			Salida PNP	Salida NPN							
		Nº de Tipo	Nº de Tipo	№ de Tipo							
		artículo	artículo	artículo							
Sin impulso de	e expulsión										
45	MZB	162 500 VADM-45	162 512 VADM-45-P	162 513 VADM-45-N							
70	MYB	162 501 VADM-70	162 514 VADM-70-P	162 515 VADM-70-N							
95	MEB	162 502 VADM-95	162 516 VADM-95-P	162 517 VADM-95-N							
140	MEB	162 503 VADM-140	162 518 VADM-140-P	162 519 VADM-140-N							
200	MEB	162 504 VADM-200	162 520 VADM-200-P	162 521 VADM-200-N							
300	MEB	162 505 VADM-300	162 522 VADM-300-P	162 523 VADM-300-N							
		•		· ·							
Con impulso d	e expulsión										
45	MZB	162 506 VADMI-45	162 524 VADMI-45-P	162 525 VADMI-45-N							
70	MYB	162 507 VADMI-70	162 526 VADMI-70-P	162 527 VADMI-70-N							
95	MEB	162 508 VADMI-95	162 528 VADMI-95-P	162 529 VADMI-95-N							
140	MEB	162 509 VADMI-140	162 530 VADMI-140-P	162 531 VADMI-140-N							
200	MEB	162 510 VADMI-200	162 532 VADMI-200-P	162 533 VADMI-200-N							
300	MEB	162 511 VADMI-300	162 534 VADMI-300-P	162 535 VADMI-300-N							

Referencias	leferencias										
Tamaño	Bobinas	con vacuostato									
		Salida PNP		Salida NPN							
		Nº de Tipo		Nº de Tipo							
		artículo		artículo							
Con impulso de exp	Con impulso de expulsión y economizador de aire										
45	MZB	171 053 VADMI-45-LS-P		171 054 VADMI-45-LS-N							
70	MYB	171 055 VADMI-70-LS-P		171 056 VADMI-70-LS-N							
95	MEB	171 057 VADMI-95-LS-P		171 058 VADMI-95-LS-N							
140	MEB	171 059 VADMI-140-LS-P		171 060 VADMI-140-LS-N							
200	MEB	171 061 VADMI-200-LS-P	1	171 062 VADMI-200-LS-N							
300	MEB	171 063 VADMI-300-LS-P		171 064 VADMI-300-LS-N							

El suministro de las toberas VADMI-...-LS-P/N incluye el cable con los conectores tipo zócalo para las bobinas y el vacuostato. Estas toberas de aspiración únicamente deberán utilizarse con el cable incluido en el suministro.