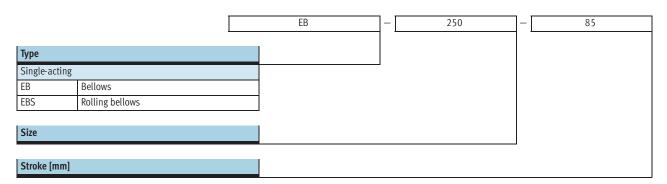
Bellows cylinders EB/EBS

Bellows cylinders EB/EBS

Key features

Bellows cylinders function both as driving and pneumatic spring components. Bellows cylinders function as a driving component by providing pressurising and exhaust functions. As the stroke increases, the force generated is reduced in relation the contractional force of

the bellows. When bellows cylinders are supplied with permanent pressure, they function as a cushioning component. The simple design consists of two metal plates with a ribbed rubber bellows. There are no sealing components and no moving mechanical parts. Bellows cylinders


are single-acting drives that do not require spring returns, as the reset is performed through the application of external force.
Rolling bellows have a different stroke/force characteristic to conventional bellows and can cover

a wider stroke range in relation to installation height.
With rolling bellows cylinders, the reduction in force only begins due to the contractional force of the bellows after approximately 50% of the stroke travelled.

Product range overview

Function	Variant	Туре	Size	Stroke [mm]	→ Page/Internet
Single-	Bellows	_			
acting		EB	145	60	3
		Single-bellows	165	65	
		cylinder	215	80	
			250	85	
			325	95	
			385	115	
		EB	145	100	3
		Double-bellows	165	125	
		cylinder	215	155	
			250	185	
			325	215	
			385	230	
		•	•	•	•
	Rolling bellows				
		EBS	80	110	12
		Rolling bellows			
			100	105	
	よる				

Type codes

FESTO

Function

Diameter 145 ... 385 mm

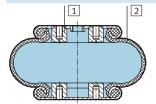
Stroke length 60 ... 230 mm

General technical data									
Size	145	165	215	250	325	385			
Pneumatic connection	G½8	G1/4	G3/4	G3/4	G1/4	G1/4			
Mode of operation	Single-acting	Single-acting							
Design	Bellows	Bellows							
Type of mounting	With female	With female thread							
Mounting position	Any	Any							

Operating and environmental conditions							
Operating medium		Filtered compressed air, lubricated or unlubricated					
Operating pressure	[bar]	0 8					
Ambient temperature	[°C]	-40 +70					
Corrosion resistance class CRO	C ¹⁾	2					

1) Corrosion resistance class 2 to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or

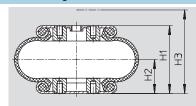
Forces [N]										
Size	145	165	215	250	325	385				
Single-bellows cylinder	Single-bellows cylinder									
Force/stroke curve	→ 4		→ 5							
Resetting force	200				300					
Double-bellows cylinder										
Force/stroke curve	→ 6		→ 7							
Resetting force	200				300					


- Note
- Bellows cylinders may only be driven against a workpiece, or they must be equipped with stroke limiting stops at the stroke ends, because the bellows would otherwise be overloaded
- A resetting force is required in order to press the bellows cylinder together to its minimum height. As a rule, this is achieved through the applied load
- The entire bearing surfaces of the upper and lower plates must be utilised in order to absorb forces
- Bellows cylinders must be exhausted before disassembly
- The rubber bellows must not come into contact with other parts during operation

Weights [g]								
Size	145	165	215	250	325	385		
Single-bellows cylinder	900	1,200	2,000	2,300	4,100	5,800		
Double-bellows cylinder	1,100	1,500	2,300	3,000	4,800	6,900		

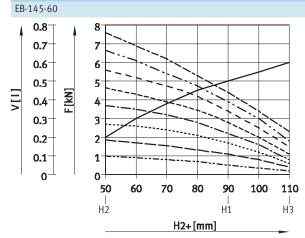
Materials

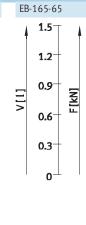
Sectional view

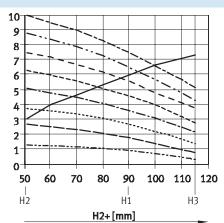


Bello	ows cylinder	
1	Housing	Galvanised steel
2	Bellows	Rubber
-	Note on materials	Free of copper, PTFE and silicone
		Conforms to RoHS

Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length

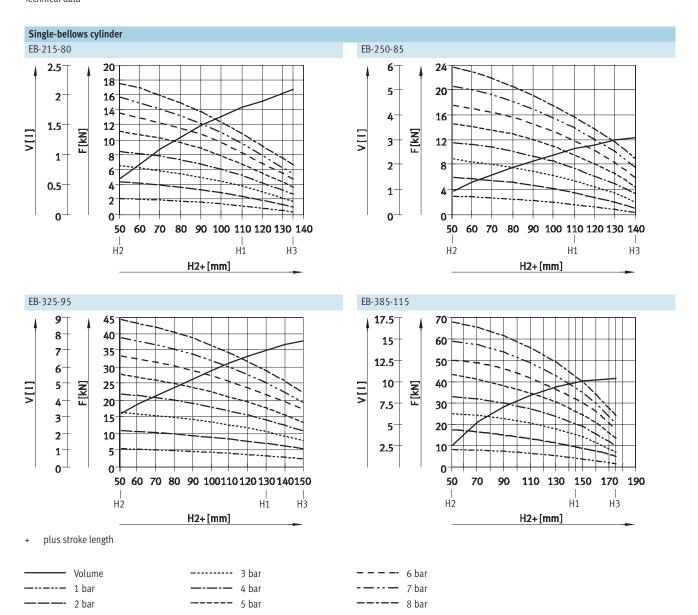

The diagram illustrates the change in thrust F with various working pressures and differing bellows volumes V in relation to stroke length. The


minimum installation height H2 must be observed in order to fully reach the indicated forces.



- H1 Nominal height at 6 bar
- H2 Minimum installation height
- H3 Maximum extended end position

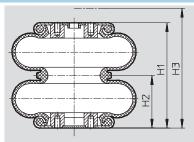
Single-bellows cylinder



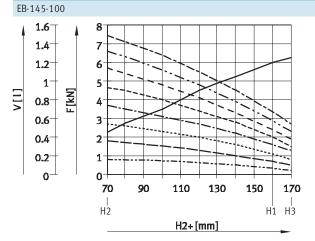
plus stroke length

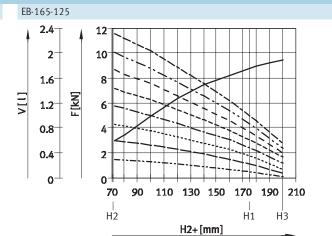
 Volume		
 1 bar		
 2 har		

 3 ba
 4 ba
 5 ba


FESTO

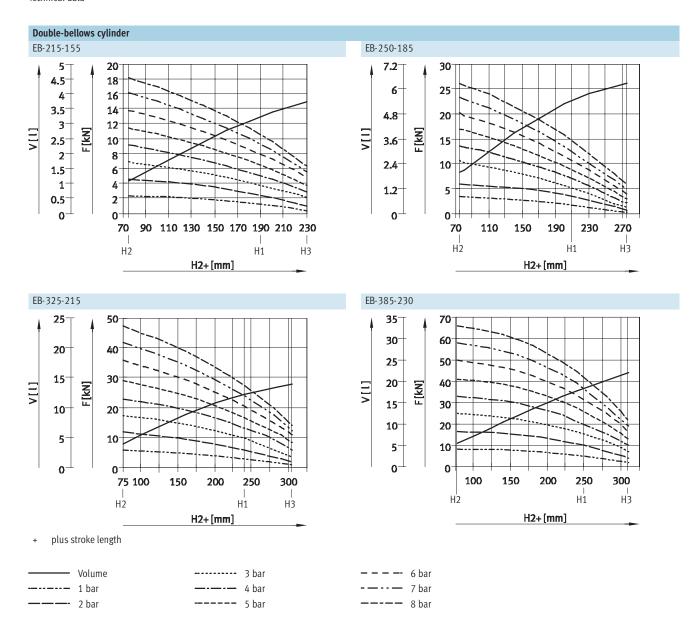
Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length


The diagram illustrates the change in thrust F with various working pressures and differing bellows volumes $\ensuremath{\mathsf{V}}$ in relation to stroke length. The

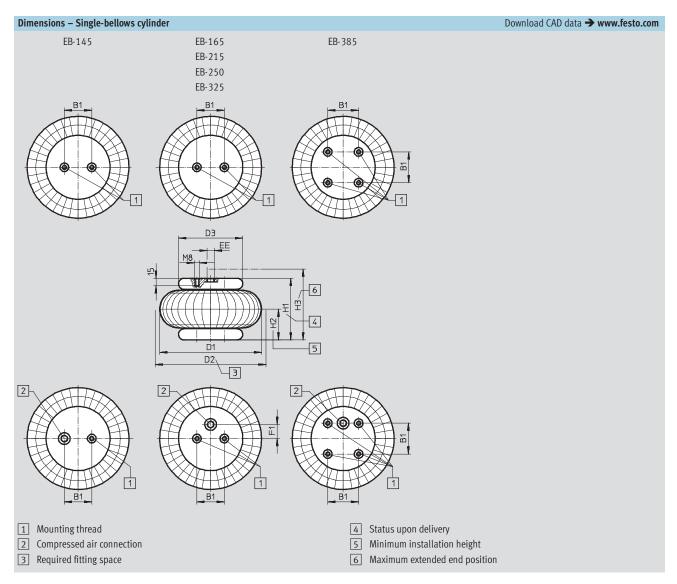

minimum installation height H2 must be observed in order to fully reach the indicated forces.

- H1 Nominal height at 6 bar
- H2 Minimum installation height
- H3 Maximum extended end position

Double-bellows cylinder


plus stroke length

Volume ---- 1 bar ——- 2 bar


----- 3 bar —--- 4 bar ----- 5 bar

--- 6 bar ---- 7 bar ---- 8 bar

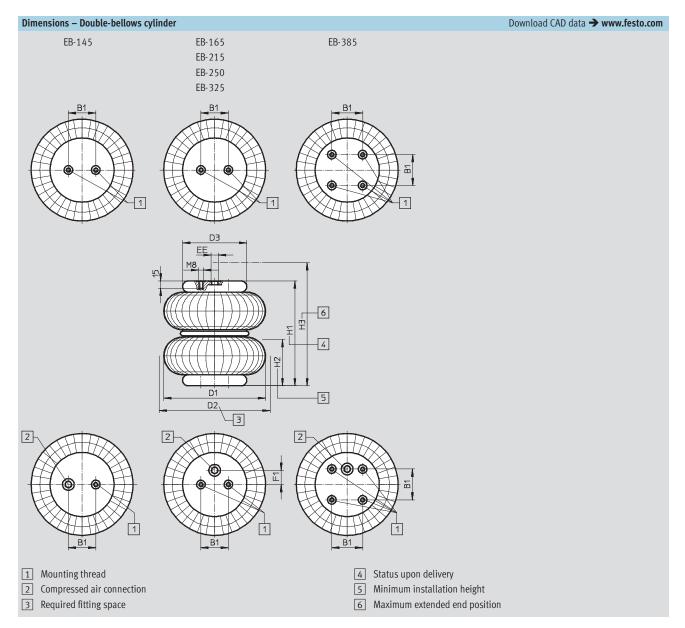
FESTO

FESTO

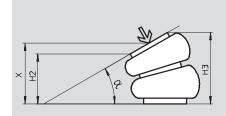
Maximum offset between the mounting surfaces

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle $\,\alpha\,$ must not be exceeded. During setup it

must be observed that the minimum height H2 is not fallen short of, and


that the maximum height ${\rm H3}$ is not exceeded at any given point. The height at the centre of the plate \boldsymbol{X} is the decisive factor in the calculation of the thrust.

Туре	B1 ±0.2	D1 Ø max.	D2 Ø	D3 ∅	EE	F1 ±0.2	H1	H2 min.	H3 max.	S _{max}	Tilt angle α max.
EB-145-60	20	145	160	90	G1/8	-	90	50	110	10	20°
EB-165-65	44.5	165	180	108	G1/4	0	90	51	115	10	20°
EB-215-80	70	215	230	141	G3/4	0	110	50	135	10	20°
EB-250-85	89	250	265	161	G3/4	38.1	110	51	140	10	20°
EB-325-95	157.5	325	340	228	G1/4	73	130	51	150	10	15°
EB-385-115	158.8	385	400	287	G1/4	79.4	145	51	175	10	15°


Ordering data	Ordering data – Single-bellows cylinder							
Size	Stroke	Part No.	Туре					
	[mm]							
145	60	36 486	EB-145-60					
165	65	36 487	EB-165-65					
215	80	36 488	EB-215-80					
250	85	36 489	EB-250-85					
325	95	193 788	EB-325-95					
385	115	193 789	EB-385-115					

Maximum offset between the mounting surfaces

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle $\,\alpha\,$ must not be exceeded. During setup it must be observed that the minimum height H2 is not fallen short of, and

that the maximum height H3 is not exceeded at any given point. The height at the centre of the plate X is the decisive factor in the calculation of the thrust.

Туре	B1 ±0.2	D1 Ø max.	D2 Ø	D3 Ø	EE	F1 ±0.2	H1	H2 min.	H3 max.	S _{max}	Tilt angle α max.
EB-145-100	20	145	160	90	G1/8	-	160	70	170	20	30°
EB-165-125	44.5	165	180	108	G1/4	0	175	72	200	20	30°
EB-215-155	70	215	230	141	G3/4	0	190	75	230	20	30°
EB-250-185	89	250	265	161	G3/4	38.1	210	75	275	20	25°
EB-325-215	157.5	325	340	228	G1/4	73	240	75	305	20	20°
EB-385-230	158.8	385	400	287	G1/4	79.4	250	77	310	20	20°

Ordering data – Double-bellows cylinder							
Size	Stroke [mm]	Part No.	Туре				
	[iiiiii]						
145	100	36 490	EB-145-100				
165	125	36 491	EB-165-125				
215	155	36 492	EB-215-155				
250	185	36 493	EB-250-185				
325	215	193 790	EB-325-215				
385	230	193 791	EB-385-230				

FESTO

Function

Diameter 80 and 100 mm

Stroke length 105 and 110 mm

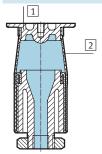
General technical data				
Size	80	100		
Pneumatic connection	G ³ /8			
Mode of operation	Single-acting			
Design	Rolling bellows			
Type of mounting	With female thread			
Mounting position	Any			

Operating and environmental conditions				
Operating medium		Filtered compressed air, lubricated or unlubricated		
Operating pressure [bar]		0.9 8.0		
Ambient temperature	[°C]	-40 +70		
Corrosion resistance class CRC ¹⁾		2		

1) Corrosion resistance class 2 to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Forces [N]		
Size	80	100
Force/stroke curve	→ 13	

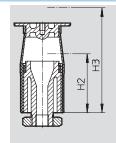
Note


- Bellows cylinders may only be driven against a workpiece, or they must be equipped with stroke limiting stops at the stroke ends, because the bellows would otherwise be overloaded
- A resetting force is required in order to press the bellows cylinder together to its minimum height. As a rule, this is achieved through the applied load
- Rolling bellows require a minimum pressure of 0.9 bar in order to be able to roll on the piston. Consequently they must not be pushed back to their initial position when in the unpressurised state as this will damage the tube
- The entire bearing surfaces of the upper and lower plates must be utilised in order to absorb forces
- The rubber bellows must not come into contact with other parts during operation
- Bellows cylinders must be exhausted before disassembly

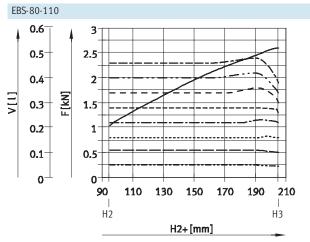
Weights [g]					
Size	80	100			
Product weight	400	500			

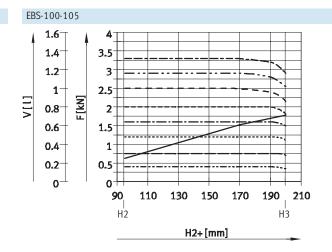
Materials

Sectional view



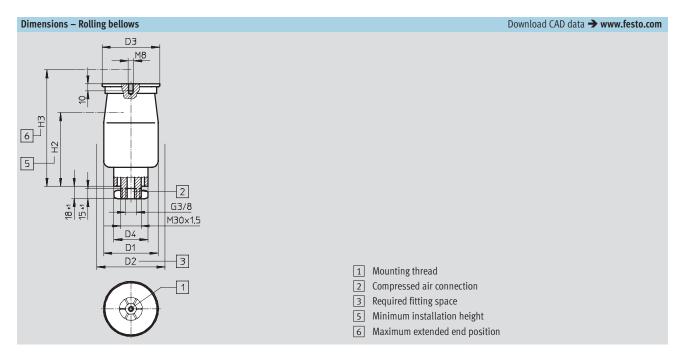
	Bellows cylinder				
ı	1	Housing	Polyamide, fibreglass reinforced		
2 Bellows Rubber					
	-	Note on materials	Free of copper, PTFE and silicone		


Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length

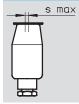

The diagrams illustrate the change in thrust F with various working pressures and differing bellows volumes V in relation to stroke length. The

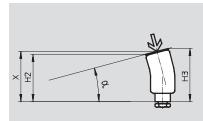
minimum installation height H2 must be observed in order to fully reach the indicated forces.

- H2 Minimum installation height
- H3 Maximum extended end position



plus stroke length


 Volume	 3 bar
 1 bar	 4 bar
 2 bar	 5 bar



Maximum offset between the mounting surfaces

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle $\,\alpha\,$ $\hbox{must not be exceeded. During setup it}\\$ $must\ be\ observed\ that\ the\ minimum$ height H2 is not fallen short of, and

that the maximum height H3 is not exceeded at any given point. The height at the centre of the plate X is the decisive factor in the calculation of the thrust.

Туре	D1 ∅ max.	D2 ∅	D3 ∅ ±1	D4 ∅ ±0.5	H2 min.	H3 max.	s _{max}	Tilt angle $lpha$ max.
EBS-80-110	80	100	76.5	50	95	205	10	15°
EBS-100-105	97	115	86.5	60.5	95	200	10	15°

Ordering data - Rolling bellows					
Size	Stroke [mm]	Part No.	Туре		
80	110	193 794	EBS-80-110		
100	105	193 795	EBS-100-105		