Cushioning components

FESTO

- Adjustable or self-adjusting
- With linear or progressive characteristic
- Stop elements: combination of cushioning and end-position sensing
- Specified types in accordance with ATEX directive for potentially explosive atmospheres
 www.festo.com/en/ex

Cushioning components Features

YSR-C – self-adjusting	With these hydraulic shock absorbers, impact energy is dissipated by dis- placing oil via a pressure-controlled valve. A built-in compression spring In the case of this self-adjusting hy- draulic shock absorber, energy acting upon the piston rod has the effect of displacing oil through a combination	returns the piston rod to the initial position. Cushioning action can be infinitely adjusted by means of an adjusting ring. Adjustment can be of a pressure operated pressure relief valve and a position dependent flow control valve. This ensures automatic adaptation to every possible cushion-	performed during operation. The shock absorbers can be used as end stops, subject to the specified maximum impact force. ing requirement within the permiss- ible energy limits. An integrated compression spring returns the pisto rod to its initial position.
YSR-C – self-adjusting	impact energy is dissipated by dis- placing oil via a pressure-controlled valve. A built-in compression spring In the case of this self-adjusting hy- draulic shock absorber, energy acting upon the piston rod has the effect of displacing oil through a combination	position. Cushioning action can be infinitely adjusted by means of an adjusting ring. Adjustment can be of a pressure operated pressure relief valve and a position dependent flow control valve. This ensures automatic	shock absorbers can be used as end stops, subject to the specified maximum impact force. ing requirement within the permiss- ible energy limits. An integrated compression spring returns the pisto
YSRW –self-adjusting, progressive	draulic shock absorber, energy acting upon the piston rod has the effect of displacing oil through a combination	valve and a position dependent flow control valve. This ensures automatic	ible energy limits. An integrated compression spring returns the pisto
YSRW –self-adjusting, progressive	draulic shock absorber, energy acting upon the piston rod has the effect of displacing oil through a combination	valve and a position dependent flow control valve. This ensures automatic	ible energy limits. An integrated compression spring returns the pisto
Canal Contraction	Unlike the YSRC shock absorber, these shock absorbers have progress- ive characteristics. This facilitates a	gradually rising cushioning force with a longer stroke. Vibration is thus significantly reduced at handling	systems and enables the realisation shorter cycle times.
Stop elements with shock absorber			
YSRWJ –self-adjusting, progressive			
	 These limit stops include three functions: Cushioning with self-adjusting, progressive hydraulic shock absorber (YSRW) 	 Adjustable cushioning stroke End-position sensing with proximity sensors SME-/SMT-8 Precision end-position adjustment 	Type YSRWJ limit stops can be used for a wide variety of applications in the handling and assembly technology system.
Hydraulic cushioning cylinders			
YDR – adjustable			
CT	With the hydraulic cushioning cylinders, energy acting on the piston rod is dissipated by displacing oil through a flow control valve. A built-in	compression spring returns the piston rod to the initial position. The braking speed can be infinitely adjusted by	means of an adjusting ring. They are suitable for slow feed speeds in the range of 0.1 m/s.

Cushioning components Product range overview

Function	Design	Туре	Ø	Stroke	Energy absorption per stroke	Cushioning characteristic curve	Position sensing	Free of copper, PTFE and silicone	→ Page
			[mm]	[mm]	[1]		A	ст	
Shock	Adjustable								
absorber	C.F.W.W.L.	YSR	8, 12, 16, 20, 25, 32	8, 12, 20, 25, 40, 60	4 380	Adjustable	-	-	1/9.1-0
	Self-adjustable		·		·	·	·	·	·
	CLEMENT CLEMENT	YSR-C	5, 7, 8, 10, 12, 16, 20, 25, 32	5, 8, 10, 12, 20, 25, 40, 60	1 380	Rapidly increasing cushioning force curve	_	-	1 / 9.1-4
	Constanting of the second seco	YSRW	5, 7, 8, 10, 12, 16, 20	8, 10, 14, 17, 20, 26, 34	1.3 70	Slowly increasing cushioning force curve	_	•	1 / 9.1-8
Stop	Self-adjustable	2							
•	CIMINE TH		5, 7, 8	7.5, 9.5, 13.5	1 3	Slowly increasing cushioning force curve	-	_	1 / 9.1-12
Hydraulic	Adjustable								
cushioning cylinders	of the second second	YDR	16, 20, 25, 32	20, 25, 40, 60	32 384	Linear, adjustable	_	_	1 / 9.2-0

Peripherals overview and type codes

FESTO

9.1

Accessories Brief description → Page Туре Hydraulic shock absorber with adjustable cushioning characteristic 1/9.1-1 1 Shock absorber YSR Mounting flange Mounting option for shock absorber 1/9.3-0 2 YSRF Buffer For the protection of piston rod 1/9.3-2 3 YSRP Oil gun For topping up oil 1/9.3-2 YSR-OEP Special oil Replacement oil 1/9.3-2 OFSB-1

Data sheet

General technical data											
Piston \varnothing		8	12	16	20	25	32				
Stroke	[mm]	8	12	20	25	40	60				
Mode of operation		Hydraulic shock	aulic shock absorbers with return spring								
Cushioning		Adjustable	djustable								
Type of mounting		Thread with lock	nut								
Impact velocity	[m/s]	0.1 3									
Product weight	[g]	40	120	240	420	860	1,600				
Ambient temperature	[°C]	-10 +80	-10 +80								

Reset times [s]						
Piston \varnothing	8	12	16	20	25	32
Short ¹⁾	≤ 0.4					
Long ²⁾	≤1					

Piston rod retracted for short period ≤ 30 s
 Piston rod retracted for longer period ≤ 6 h

Forces [N]										
Piston \varnothing	8	12	16	20	25	32				
Max. stop force in end positions	400	900	1,600	2,500	4,000	6,400				
Resetting force	3	25	20	25	30	35				

Energies [J]										
Piston \varnothing	8	12	16	20	25	32				
Max. energy absorption per stroke	4	10.8	32	62.5	160	380				
Max. energy absorption per hour	24,000	77,000	130,000	180,000	293,000	483,000				

Data sheet

[s/ш] ^

1

0,5

9.1

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. The

0,5

2

1

Э 4 6 8 10

arrows relate to the examples starting on page \rightarrow 1 / 9.3-6.

20

m [kg]

40 60

160

90

400

600

250

1000

Shock absorber	Max. stop force in end position	Force A =	Force A =	Force A =
YSR-8-8-D	400 N	0 N	100 N	200 N
YSR-12-12	900 N	0 N	200 N	500 N
YSR-16-20	1,600 N	0 N	500 N	800 N
YSR-20-25	2,500 N	0 N	800 N	1,200 N
YSR-25-40	4,000 N	0 N	1 200 N	2,000 N
YSR-32-60	6,400 N	0 N	2,000 N	3,000 N

Data sheet

FESTO

YSR-32-60

32

10 871

Peripherals overview and type codes

Cushioning componentsShock absorbers

Access	sories		
	Туре	Brief description	→ Page
1	Shock absorber YSR-C	Hydraulic shock absorber with rapidly increasing cushioning force curve	1/9.1-5
2	Mounting flange YSRF	Mounting option for shock absorber	1/9.3-0
3	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	1/9.3-1
4	Stop limiters YSRA	Stroke limiter for shock absorber	1/9.3-2

Data sheet

General technical data											
Piston \varnothing		5	7	8	10	12	16	20	25	32	
Stroke	[mm]	5	5	8	10	12	20	25	40	60	
Mode of operation		Hydraulic s	Iraulic shock absorbers with return spring								
Cushioning		Self-adjust	elf-adjustable								
Type of mounting		Thread with	n locknut								
Impact velocity	[m/s]	0.05 2	0.05 3								
Product weight	[g]	9	18	30	50	70	140	240	600	1,250	
Ambient temperature	[°C]	-10 +80				•	·				

Reset time [s]									
Piston \varnothing	5	7	8	10	12	16	20	25	32
Reset time ¹⁾	≤0.2							≤ 0.4	≤ 0.5

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second.

Forces [N]											
Piston \varnothing	5	7	8	10	12	16	20	25	32		
Min. insertion force ¹⁾	5.5	8.5	15	20	27	42	80	143	120		
Max. stop force ²⁾ in end positions	200	300	500	700	1,000	2,000	3,000	4,000	6,000		
Min. resetting force ³⁾	0.7	1	3.1	4.5	6	6	14	14	21		

This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position.
 If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke.
 This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem).

Energies [J]									
Piston \varnothing	5	7	8	10	12	16	20	25	32
Max. energy absorption per stroke	1	2	3	6	10	30	60	160	380
Max. energy absorption per hour	8,000	12,000	18,000	26,000	36,000	64,000	92,000	150,000	220,000

Mass range [kg]										
Piston Ø	5	7	8	10	12	16	20	25	32	
Permissible mass range up to	1.5	5	15	25	45	90	120	200	400	

Data sheet

Cocti	onal view										
secui	unat view										
Ø											
W											
V Pistor	n Ø	666888	5	7	8	10	12	16	20	25	32
_	n Ø Housing		5			10 Galvanise		16	20	25	32
1			5	7 nickel-plated		Galvanise		16	20	25 Steel wit	
1	Housing		5 Brass,	7 nickel-plated	8	Galvanise		16	20		h
Pistor 1 2 -	Housing		5 Brass, Polyace	7 nickel-plated	8 Polyamide	Galvanise		16	20	Steel wit	h

Selection graph for self-adjusting shock absorbers YSR-C Impact velocity dependent on mass m

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. The

arrows relate to the examples starting on page → 1 / 9.3-6.

Shock absorber	Max. stop force in end position	Force A =	Force A =	Force A =	
YSR-5-5-C	200 N	0 N	50 N	100 N	
YSR-7-5-C	300 N	0 N	100 N	200 N	
YSR-8-8-C	500 N	0 N	100 N	200 N	
YSR-10-10-C	700 N	0 N	150 N	300 N	
YSR-12-12-C	1,000 N	0 N	200 N	500 N	
YSR-16-20-C	2,000 N	0 N	500 N	800 N	
YSR-20-25-C	3,000 N	0 N	800 N	1,200 N	
YSR-25-40-C	4,000 N	0 N	1,200 N	2,500 N	
YSR-32-60-C	6,000 N	0 N	2,000 N	4,000 N	

1 YSR-5-5

2 YSR-7-5-C

3 YSR-8-8-C YSR-10-10-C

5 YSR-12-12-C 6 YSR-16-20-C

7 YSR-20-25-C

8 YSR-25-40-C

9 YSR-32-60-C

4

Data sheet

Ø	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1
[mm]			×	×.	×.	±0.1
5	3	M8x1	2.5	5 ±0.1	6.7 ±0.05	29
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	34
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	46
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	55
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	64
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	86
20	8	M26x1.5	10	20 ±0.2	24 ±0.1	104
25	10	M30x1.5	12	25 ±0.2	28 ±0.1	152
32	12	M37x1.5	15	32 ±0.2	35 ±0.1	207

Ø [mm]	L2 ±0.3	L3	L4	L5	<i>≕</i> ©1	Max. tightening torque =© 1 [Nm]
[IIIII]	±0.5					
5	19	10.8 +0.6/-0.3	5.5 ±0.1	5.8 +0.55/-0.25	10	2
7	23	12.3 +0.7/-0.35	7 ±0.2	7.3 +0.55/-0.25	13	3
8	33	16.3 +0.7/-0.35	8 ±0.2	8.3 +0.55/-0.25	15	5
10	42	20.5 +0.7/-0.35	10 ±0.2	10.5 +0.55/-0.25	17	8
12	51	24.5 +0.7/-0.35	12 ±0.2	12.5 +0.55/-0.25	19	20
16	69	36.5 +0.7/-0.35	16 ±0.2	16.5 +0.55/-0.25	27	35
20	87	45.5 +0.7/-0.35	20 ±0.2	20.5 +0.55/-0.25	32	60
25	125	61.5 +1.25/-0.75	20.5 ±0.4	21.5 +0.95/-0.55	36	80
32	179	87 +1.25/-0.75	26 ±0.4	27 +0.95/-0.55	46	100

Ordering	data	
Ø	Part No.	Туре
[mm]		
5	158 981	YSR-5-5-C ¹⁾
7	160 272	YSR-7-5-C ¹⁾
8	34 571	YSR-8-8-C ¹⁾
10	191 199	YSR-10-10-C ¹⁾
12	34 572	YSR-12-12-C ¹⁾
16	34 573	YSR-16-20-C ¹⁾
20	34 574	YSR-20-25-C ¹⁾
25	160 273	YSR-25-40-C
32	160 274	YSR-32-60-C

1) Free of copper, PTFE and silicone

Download CAD data → www.festo.com/en/engineering

Peripherals overview and type codes

Access	ories		
	Туре	Brief description	→ Page
1	Shock absorber YSRW	Hydraulic shock absorber with progressive cushioning characteristic	1 / 9.1-9
2	Mounting flange YSRF	Mounting option for shock absorber	1/9.3-0
3	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	1/9.3-1
4	Stop limiters YSRA	Stroke limiter for shock absorber	1/9.3-2

Data sheet

	Cushioning component
20	ng ci
34	ioni
	Cush

General technical data										
Piston Ø		5	7	8	10	12	16	20		
Stroke	[mm]	8	10	14	17	20	26	34		
Mode of operation		Hydraulic sh	draulic shock absorbers with return spring							
Cushioning		Self-adjustable								
Type of mounting		Thread with	locknut							
Impact velocity	[m/s]	0.1 2	0.1 3							
Product weight	[g]	8	18	34	54	78	190	330		
Ambient temperature	[°C]	-10 +80		•			•			

Reset time [s]							
Piston Ø	5	7	8	10	12	16	20
Reset time ¹⁾	≤ 0.2					≤ 0.3	

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second.

Forces [N]							
Piston \varnothing	5	7	8	10	12	16	20
Min. insertion force ¹⁾	6.5	6.5	16	18	26	42	85
Max. stop force ²⁾ in end	200	300	500	700	1,000	2,000	3,000
positions							
Min. resetting force ³⁾	1	1.7	3.5	3.8	5.2	6.6	10

This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position.
 If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke.
 This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem).

Energies [J]										
Piston \varnothing	5	7	8	10	12	16	20			
Max. energy absorption per stroke	1.3	2.5	4	8	12	35	70			
Max. energy absorption per hour	10,000	15,000	21,000	30,000	41,000	68,000	100,000			

Mass range [kg]							
Piston Ø	5	7	8	10	12	16	20
Permissible mass range up to	2	5	10	20	30	50	80

Data sheet

Impact velocity dependent on mass m

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

Shock absorber	Max. stop force in end position	Force A =	Force A =	Force A =
YSRW-5-8	200 N	0 N	50 N	100 N
YSRW-7-10	300 N	0 N	75 N	150 N
YSRW-8-14	500 N	0 N	100 N	200 N
YSRW-10-17	700 N	0 N	150 N	300 N
YSRW-12-20	1,000 N	0 N	200 N	400 N
YSRW-16-26	2,000 N	0 N	500 N	800 N
YSRW-20-34	3,000 N	0 N	800 N	1,200 N

Data sheet

Ø	B1	D1	D2	D3	D4	L1	L2	L3
			Ø	Ø	Ø			
[mm]						±0.1	±0.3	
5	3	M8x1	2.5	5 ±0.1	6.7 ±0.05	33.5	22.5	13.8 +0.6/-0.25
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	41	30	17.3 +0.7/-0.25
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	53	40	22.3 +0.7/-0.25
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	62	49	27.5 +0.7/-0.25
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	72.5	59.5	32.5 +0.7/-0.25
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	91	70	42.5 +0.7/-0.35
20	8	M26x1.5	10	20 ±0.2	24 ±0.1	112	91	54.5 +0.7/-0.35

Ø [mm]	L4	L5	L6 +0.5	L7	<i>≍</i> ©1	-©2	Max. tightening torque ≍G 1 [Nm]
5	5.5 ±0.1	5.8 +0.35/-0.25	5	3.5 ±0.25	10	7	2
7	7 ±0.2	7.3 +0.35/-0.25	6	4.3 ±0.25	13	9	3
8	8 ±0.2	8.3 +0.4/-0.25	8	5.3 +0.3/-0.25	15	11	5
10	10 ±0.2	10.5 +0.4/-0.25	10	6.5 +0.3/-0.25	17	13	8
12	12 ±0.2	12.5 +0.4/-0.25	12	7.5 +0.3/-0.25	19	15	20
16	16 ±0.2	16.5 +0.4/-0.25	12	9.5 +0.3/-0.25	27	20	35
20	20 ±0.2	20.5 +0.4/-0.25	12	11.5 +0.3/-0.25	32	24	60

Ordering	Ordering data				
Ø	Part No.	Туре			
[mm]					
5	191 192	YSRW-5-8			
7	191 193	YSRW-7-10			
8	191 194	YSRW-8-14			
10	191 195	YSRW-10-17			
12	191 196	YSRW-12-20			
16	191 197	YSRW-16-26			
20	191 198	YSRW-20-34			

Download CAD data → www.festo.com/en/engineering

Stop elements YSRWJ Peripherals overview and type codes

Access	ories		
	Туре	Brief description	→ Page
1	Stop element	Hydraulic shock absorber with progressive cushioning characteristic	1/9.1-13
	YSRWJ	The cushioning length is adjustable	
2	Proximity switches	Sensing option for end positions	1 / 9.3-3
	SME-/SMT-8		

Stop elements YSRWJ

General technical data					
Piston Ø		5	7	8	
Stroke	[mm]	8	10	14	
Mode of operation		A piston rod in front of the sho	ock absorber transmits the for	ce to the shock absorber. This serves as the end stop and	
		actuates the proximity sensor via a magnet mounted on it.			
Cushioning		Self-adjustable			
Type of mounting		Thread with locknut			
Position sensing		Via proximity sensor			
Impact velocity	[m/s]	0.05 2	0.05 3		
Repetition accuracy	[mm]	0.02			
Product weight	[g]	45	75	110	
Ambient temperature	[°C]	0 +60			

Reset time [s]			
Piston \varnothing	5	7	8
Reset time ¹⁾	≤ 0.2		

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second.

Forces [N]			
Piston Ø	5	7	8
Min. insertion force ¹⁾	5	18	80
Max. stop force ²⁾ in end	200	300	500
positions			
Min. resetting force ³⁾	1.5	2	3.5

This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position.
 Impact force may not exceed the maximum specified value.
 This is maximum force that can be exerted on the piston rod so that the shock absorber advances fully.

Energies [J]					
Piston \varnothing	5	7	8		
Max. energy absorption per stroke	1	2	3		
Max. energy absorption per hour	10,000	15,000	21,000		

Mass range [kg]				
Piston \varnothing	5	7	8	
Permissible mass range up to	2	5	10	

Stop elements YSRWJ

$\mathsf{Piston}\, \varnothing$ 5 7 8 1 Housing Brass, nickel-plated 2 Stop bolt Steel, stainless and reinforced 3 Distance sleeve Aluminium 4 Threaded barrel Brass, nickel-plated Material note Free of copper, PTFE and silicone

9.1

Selection graphs for limit stops with shock absorber YSRWJ Impact velocity dependent on mass m

YSRWJ-5-8-A

Without additional force 1

- 2 With additional force A = 50 N
- 3 With additional force A = 100 N

YSRWJ-7-10-A

1 Without additional force

- 2 With additional force A = 75 N
- 3 With additional force A = 150 N

YSRWJ-8-14-A

- 1 Without additional force
- 2 With additional force A = 100 N
- 3 With additional force A = 150 N

Products 2004/2005 - Subject to change - 2004/10

Stop elements YSRWJ

Dimensions

YSR-...-C

2 5

2

L6

L1

<u>=C1</u>

B1

L2

1

_7

L3

- 1 Soft cushioning characteristics cushioning stroke is adjustable
- 2 End-position sensing via proximity sensor SME-/SMT-8 that can be integrated
- 3 Precision end-position adjustment
- 4 Precision end position thanks to internal, metallic inserts

	Download CAD data → www.festo.com/en/engineering
	B2 1 Rubber buffer, only with sizes: YSRWJ-7-10-A and YSRWJ-8-14-A Precision end-position adjustment
D5B1B1	3 Slot for proximity sensor

3 Slot for proximity sensor SME-/SMT-8

Ø	B1	B2	D1	D2	D3	D4	D5	H1	L1
[mm]		+0.4			+0.1		+0.1	+0.3	+0.3/-0.1
5	3	8.1	M8x1	4	12	6.7 ±0.05	2	16.5	97.4
7	3.5	8.5	M10x1	6	14	8.6 ±0.05	2.4	18.3	144.8
8	4	8.5	M12x1	8	16	10.4 ±0.1	2.4	20.75	133.3

L4

Ø	L2	L3	L4	L5	L6	L7	=©1	=©2
[mm]	+0.4		+0.45/-0.1	+0.5	+0.1/-0.55	+0.3		
5	32.5	8 +0.7/-0.55	21.6	5	4.4	0.5	10	7
7	40	10 +0.8/-0.55	21.1	6	4	0.5	13	9
8	40	14 +0.8/-0.55	33.6	8	4.4	0.5	15	11

Ordering d	Ordering data						
Ø	Part No.	Туре					
[mm]							
[IIIII]							
5	192 968	YSRWJ-5-8-A					
,		-					
7	192 967	YSRWJ-7-10-A					
8	192 966	YSRWJ-8-14-A					
Ŭ		, 0 14 //					

Hydraulic cushioning cylinder YDR Peripherals overview and type codes

Access	Accessories							
	Туре	Brief description	→ Page					
1	Hydraulic cushioning cylinders YDR	Hydraulic cushioning cylinder with reset spring for slow feed speeds	1/9.2-1					
2	Mounting flange YSRF	Mounting option for shock absorber	1/9.3-0					
3	Buffer YSRP	For the protection of piston rod	1/9.3-2					
-	Oil gun YSR-OEP	For topping up oil	1/9.3-2					
-	Special oil OFSB-1	Replacement oil	1/9.3-2					

Hydraulic cushioning cylinder YDR Data sheet

General technical data					
Piston \varnothing		16	20	25	32
Stroke	[mm]	20	25	40	60
Mode of operation		Hydraulic cushioning cylinder	with return spring		
Cushioning Adjustable					
Type of mounting		Thread with locknut			
Impact velocity, max.	[m/s]	0.3		0.4	
Min. feed speed	[mm/s]	0.2			
Max. feed speed	[mm/s]	100			
Product weight	[g]	280	460	900	1,600
Ambient temperature	[°C]	0 +80			

Reset times [s]							
Piston \varnothing	16	20	25	32			
Short ¹⁾	≤ 0.4						
Long ²⁾	≤1						

Piston rod retracted for short period ≤ 30 s
 Piston rod retracted for longer period ≤ 6 h

Forces [N]							
Piston Ø	16	20	25	32			
Min. feed force	60	70	90	120			
Max. feed force ¹⁾	1,600	2,500	4,000	6,400			
Resetting force	25	25	35	35			

1) Corresponds to max. force in the end position

Energies [J]				
Piston \varnothing	16	20	25	32
Max. energy absorption per stroke	32	62.5	160	384
Max. energy absorption per hour	65,000	90,000	150,000	220,000
Max. residual energy	0.16	0.32	0.8	2

Cushioning components Hydraulic cushioning cylinders

Hydraulic cushioning cylinder YDR

Data sheet

FESTO

Hydraulic cushioning cylinder YDR Data sheet

[mm]						
16	6	M20x1.25	8	151	28	53
20	8	M24x1.25	10	174	35	60
25	10	M30x1.5	12	227	52	80
32	12	M37x1.5	15	275	75	108

Ø	L4	L5 max.	L6	=© 1	Max. tightening torque ∹⊊ 1
[mm]					[Nm]
16	62.5	5	5	24	35
20	72.5	6	6	30	60
25	89.8	9	10	36	80
32	106.3	13	15	46	100

Ordering		
Ø	Part No.	Туре
[mm]		
16	14 900	YDR-16-20
20	14 901	YDR-20-25
25	14 902	YDR-25-40
32	14 903	YDR-32-60

Accessories for cushioning components

Data sheet

Possible combinations				
Cushioning components	YSR	YSR-C	YSRW	YDR
Mounting flange				
YSRF				
YSRF-8	-	∎1)	∎1)	-
YSRF-12		-	-	-
YSRF-16		-	-	
YSRF-20		-	-	
YSRF-25			-	
YSRF-32			-	
YSRF-C				
YSRF-8-C				-
YSRF-12-C	-			-
YSRF-16-C	-			-
YSRF-20-C	-			-

1) For shock absorber size \varnothing 7

	ns and order	ring data										
YSRF	1	1		1		1	1	1	[an a1)		In	_
For \varnothing	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part No.	Туре
[mm]										[g]		
8	16	5.5	10	5.5	10.2	16	25	38	2	50	11 681	YSRF-8
12	25	6.8	11	6.6	15.2	25	36	50	2	175	11 682	YSRF-12
16	30	9	15	9	20.2	30	45	63	2	300	11 683	YSRF-16
20	36	11	18	11	24.2	36	56	78	2	535	11 684	YSRF-20
25	45	13	20	13.5	30.2	45	63	86	2	895	11 685	YSRF-25
32	55	15	24	15.5	37.2	55	80	108	2	1,730	11 686	YSRF-32

1) Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents.

YSRF-C												
For Ø [mm]	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part No.	Туре
fuuui										[g]		
8	20	5.5	10	5.5	12.2	20	28	41	2	90	34 575	YSRF-8-C
12	25	6.8	11	6.6	16.2	25	36	50	2	180	34 576	YSRF-12-C
16	32	9	15	9	22.2	32	45	63	2	330	34 577	YSRF-16-C
20	40	11	18	11	26.2	40	56	78	2	700	34 578	YSRF-20-C

1) Corrosion resistance class 2 according to Festo standard 940 070

Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents.

Accessories for cushioning components

FESTO

Mounting flange YSRF-S-C

Material: Aluminium, steel Free of copper, PTFE and silicone

Possible combinations				
Cushioning components	YSR	YSR-C	YSRW	YDR
Mounting flange				
YSRF-S-8-C	-			-
YSRF-S-12-C	-			-
YSRF-S-16-C	-			-
YSRF-S-20-C	-			-

Dimensio	Dimensions and ordering data													
For Ø	B1	D1	D2 Ø	H1	H2	H3	H4	L1	L2	L3	T1	Weight	Part No.	Туре
[mm]												[g]		
8	20	M12x1	5.5	35	25	9.5	16	32	45	4	2	12	34 579	YSRF-S-8-C
12	25	M16x1	6.6	42	32	12.5	20	36	50	3	4	130	34 580	YSRF-S-12-C
16	30	M22x1.5	9	48	38	16.5	22	45	60	8	4	180	34 581	YSRF-S-16-C
20	30	M26x1.5	11	52	42	19	23.5	56	80	11.5	4	250	34 582	YSRF-S-20-C

--Note Inductive sensors for position sensing → 1 / 9.3-3

Accessories for cushioning components

Data sheet

Buffer YSRP

Material: Steel, polyurethane

6 Polyurethane insert7 Buffer

FESTO

Dimensions and ordering data

Difficition	is and ordering up	ita						
For \varnothing	D3	D4	L7	L8	=© 2	CRC ¹⁾	Weight	Part No. Type
[mm]							[g]	
8	8	M2	6,7	4	0,9	2	4	539 638 YSRP-8
12	12	M4	10	6	2	2	7	11 133 YSRP-12
16	16	M5	13.5	8	2.5	2	15	11 134 YSRP-16
20	20	M6	17	10	3	2	27	11 135 YSRP-20
25	25	M8	20.5	12	4	2	52	11 136 YSRP-25
32	32	M8	26	15	4	2	110	11 137 YSRP-32

1) Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents.

Stop limiter YSRA-C

Material: Steel

Dimension	Dimensions and ordering data									
For \varnothing	L	⇒⊂	Weight	Part No. Type						
[mm]			[g]							
7	14.5	13	12	150 932 YSRA-7-C						
8	18	15	28	150 933 YSRA-8-C						
12	24.5	19	48	150 934 YSRA-12-C						

Oil gun YSR-OEP

Special oil OFSB-1

Ordering data							
Part No.	Туре						
11 698	YSR-OEP						

Ordering d	ita	
Part No.	Туре	
207 873	OFSB-1	

Accessories for cushioning components Data sheet

Ordering da	ata – Proximity swit	ch for slot 8, n	nagneto-resis	tive, for stop elen	nents YSRWJ			Data sheets→ 1 / 10	.2-13
	Mounting	Switch	Electrical	connection		Cable length	Part No.	Туре	
		output	Cables	M8 plug	M12 plug	[m]			
NO contact									
R	Inserted from	PNP	3 wires	-	-	2.5	525 898	SMT-8F-PS-24V-K2,5-OE	·O·
	above	NPN					525 909	SMT-8F-NS-24V-K2,5-OE	۰O۰
		PNP	-	3-pin	-	0.3	525 899	SMT-8F-PS-24V-K0,3-M8D	·O·
		NPN					525 910	SMT-8F-NS-24V-K0,3-M8D	• O ·
æ	Inserted from	PNP	3 wires	-	-	2.5	175 436	SMT-8-PS-K-LED-24-B	
	end		-	3-pin	-	0.3	175 484	SMT-8-PS-S-LED-24-B	
	•			•	•				
NC contact									
R	Inserted from	PNP	3 wires	-	-	7.5	525 911	SMT-8F-PO-24V-K7,5-OE	·O·
Se la	above								
Ordering da	ata – Proximity swit	ch for slot 8, n	agnetic reed,	, for stop element	s YSRWJ			Data sheets→ 1 / 10	.2-16
	Mounting	Electrical co	onnection			Cable length	Part No.	Туре	
		Cables		M8 plug		[m]			
NO contact	•					•	•		
	Inserted from	3 wires		-		2.5	525 895	SME-8F-DS-24V-K2,5-OE	·O·
	above	-		3-pin		0.3	525 896	SME-8F-DS-24V-K0,3-M8D	۰O۰
	Inserted from	3 wires		-		2.5	150 855	SME-8-K-LED-24	-
<u>i</u>	end	-		3-pin		0.3	150 857	SME-8-S-LED-24	
	1								
NC contact									
R	Inserted from	3 wires		-		7.5	525 906	SME-8F-DO-24V-K7,5-OE	۰O۰
Ser a	above								
	•					•			
Ordering da	ata – Inductive sens	ors M8, for mo	ounting flange	YSRF-S-C				Data sheets -> Volu	ume 4
_	Electrical conne				LED	Cable length	Part No.	Туре	
	Cable	M8 plu	g	output		[m]			
NO contact	•			4 F			1		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 wires	-		PNP		2.5	150 386	SIEN-M8B-PS-K-L	
STAR STAR					-				
	_	3-pin		PNP		_	150 387	SIEN-M8B-PS-S-L	
- THE	_	J-hiii		r ivr	-		150 587	JILN-MOD-F J-J-L	
O Production of the second sec									
NC contact	2			DND			150.200		
AND	3 wires	-		PNP	-	2.5	150 390	SIEN-M8B-PO-K-L	
	-	3-pin		PNP	_		150 391	SIEN-M8B-PO-S-L	
a starter and the starter and					•				
<u> </u>							1		

Ordering data	– Plug sockets						Data sheets 🗲 1 / 10.2-100
	Mounting	Switch output	Switch output		Cable length	Part No.	Туре
		PNP	NPN		[m]		
Straight plug s	ocket						
	M8 union nut	-		3-pin	2.5	159 420	SIM-M8-3GD-2,5-PU
CELE-		-	-		5	159 421	SIM-M8-3GD-5-PU
Angled plug so	cket						
	M8 union nut	-		3-pin	2.5	159 422	SIM-M8-3WD-2,5-PU
		-	-		5	159 423	SIM-M8-3WD-5-PU

Core Range

# Calculation tool for cushioning components

	Data sheet			
	This selection aid helps you find the right shock absorber for every application. When you are choosing a shock absorber, we recommend that you proceed as follows:	<ol> <li>Determine the following values, effective at the time of impact:         <ul> <li>Force (A)</li> <li>Equivalent mass m_{equiv}</li> <li>Impact velocity (v)</li> </ul> </li> </ol>	<ol> <li>Select a shock absorber from the graphs on the following pages.</li> <li>Check your selection on the basis of its maximum cushioning energy (W_{max}.)</li> </ol>	Selection and ordering aid Shock absorber www.festo.com/en/engineering
mponents	When you are choosing a shock absorber for your application, ensure that the following values are not exceeded:	<ul> <li>Permissible energy load per stroke:</li> <li>W_{min.} = 25%</li> <li>W_{max.} = 100%</li> <li>Recommended energy load per stroke:</li> <li>W_{opt.} = 50% 100 %</li> </ul>	<ul> <li>Max. energy absorption per hour</li> <li>Max. residual energy</li> <li>Max. stop force in end position</li> </ul>	
<ul><li><b>Cushioning components</b></li><li>Accessories for cushioning components</li></ul>	The (angular) velocity required in the formulae is the velocity at the time of the impact on the shock absorber. This depends on the dynamic characteristics of the drive component and is thus difficult to determine. It is better to determine the mean velocity ( $v_m = s/t$ or $\omega_m = \phi/t$ ).	In order to prevent damage to the drive concerned, calculations should in the interests of safety be based on the following values: $v = 1.25 \dots 2 v_m$ $\omega = 1.25 \dots 2 \omega_m$ Guide values for linear motions: Factor 2 with strokes < 50 mm, factor 1.5 with strokes > 50 mm and < 100 mm, factor 1.25 with strokes > 100 mm.	The fact that the (angular) velocity appears in the calculation as a squared value means that the expected error becomes considerably larger. The calculation can thus be regarded only as an approximation. The safety factor does, however, ensure that the selected shock absorber is not too small.	
	The following formulae are required for the calculation:	$\begin{split} A &= F + G \\ A &= F + m \times g \times \sin \alpha \\ W_{total} &= \frac{1}{2} \times m \times v^2 + A \times s < T \\ W_h &= W_{total} \times Stroke \div Hours < T \end{split}$		
	The following applies additionally for rotary motions:	$m_{equiv.} = \frac{J}{R^2}$ $v = \omega \times R$ $A = \frac{M}{R} + m \times g \times \sin \alpha \times \frac{a}{R}$		
	The following abbreviations are used:	$A = Additional force = F + G [N]$ $F = Cylinder force minus frictional force [N]$ $G = Force due to weight = m x g x sin \alpha$ Special cases: $\alpha = 0^{\circ}: Horizontal motion$ $G = 0$ $\alpha = 90^{\circ}: Downward motion$ $G = m x g$ $\alpha = 90^{\circ}: Upward motion:$ $G = -m x g$	$v = Impact velocity [m/s]$ $m_{equiv.} = Equivalent mass [kg]$ $g = Acceleration due to gravity$ $9.81 [m/s^2]$ $s = Shock absorber stroke [m]$ $\alpha = Impact angle [°]$ $W_{total} = Cushioning work/stroke [J]$ $W_h = Cushioning work/hour [J]$	<ul> <li>J = Mass moment of inertia         [kg x m²]</li> <li>R = Distance between mass pivot         point and shock absorber [m]</li> <li>ω = Angular velocity [rad/s]</li> <li>M = Drive torque [Nm]</li> <li>a = Distance between centre of         gravity of mass and pivot point</li> </ul>
	1/9.3-4		Products 2	2004/2005 – Subject to change – 2004/10

## Calculation tool for cushioning components

#### Data sheet

А

= 537 N

## FESTO



Wh

absorbers on the basis of the graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (mequiv) and the impact velocity (v). The curves move to the left as the additional force increases.

Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the

maximum permissible values for cushioning work (Wmax.) and cushioning work per hour (Whmax.) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).

= Wtotal x strokes/h = 78 Nm x 1,800 = 140,000 J

Result		
	YSR-25-40	YSR-25-40-C
W _{total}	78 J	78 J
W _h	140,000 J	140,000 J
W _{max} . ¹⁾	160 J > W _{total}	160 J > W _{total}
W _{hmax} .	290,000 > W _{max.}	150,000 > W _{max.}

1) The degree of utilisation is 49% in both cases.

# **Calculation tool for cushioning components** Data sheet



Sizing example for rotary motion			
Example for rotary motion: m _{equiv} = J/R ² = 8 kg v = ω x R A = M/R = 40 N	Po-S Mass m S		J = 2 kg m ² ω = 4 rad/s R = 0.5 m M = 20 Nm 900 strokes per hour
In the process of selecting shock absorbers on the basis of graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent	choices are the shock absorbers YSR-16-20 and YSR-16-20-C. We must now determine whether the maximum permissible values for cushioning work (W _{max.} ) and	Experiment: $W_{total} = \frac{1}{2} \times m \times v^2 + A \times s$ $= (1/2 \times 8 \times 2^2 + 40 \times 0.02) J = 17 J$	For the above application, both shock absorbers are suitable. Further selection criteria are adjustment facilities and size.
mass (m _{equiv} ) and the impact velocity (v). The curves move to the left as the additional force increases. Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the graphs show (dotted line), possible	cushioning work per hour (W _{hmax} .) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).	W _h = W _{total} x strokes/h = 17 J x 900 = 15,300 J	

Result			
	YSR-16-20	YSR-16-20-C	
W _{total}	17 J	17 J	
W _h	15,300 J	15,300 J	
W _{max} .	$32 J > W_{total}^{1}$	$30 \text{ J} > \text{W}_{\text{total}}^{2)}$	
W _{hmax} .	130,000 > W _{max} .	64,000 > W _{max.}	

The degree of utilisation is 53%.
 The degree of utilisation is 57%.