Vacuum generators

- Short switching times thanks to integrated solenoid valves
- Reliable release of parts under suction via ejector pulse
- Vacuum monitoring with vacuum switch
- Flexible assembly with fixed grid dimensions
- Sturdy, compact design
- Protection class IP65

Vacuum generators

Key features

Product overview

All Festo vacuum generators have a single-stage design and operate according to the venturi principle. The product families described below have been designed for a wide range of applications. The different performance classes of the individual product families make it possible to select vacuum generators tailored to suit specific requirements.

1.2

Vacuum generators

Key features

FESTO

Electropneumatic

Features

At a glance

- Compact and sturdy design Components with numerous individual functions form a single unit
- Extremely short switching times thanks to integrated solenoid valves
- No external or additional components required
- Easily fitted thanks to compact dimensions and therefore particularly suitable for handling operations
- Cost effective assembly as the solenoid valve, vacuum generator and silencer are all in a single unit.
- Protection class IP65

With manual override

- With integrated silencer for reducing exhaust noise
- With integrated filter for the air to be evacuated and a display window which shows the degree of filter contamination
- With or without integrated vacuum switch to monitor the vacuum with PNP or NPN output

FESTO

■ With 2 vacuum ports, optional

Vacuum generator VADM-.../-...-P/-N

The compressed air supply of these vacuum generators is controlled by the built-in solenoid valve.

When the electrical power supply is switched on, the valve is actuated and the flow of compressed air from 1 (P) to 3 (R) generates a vacuum at port 2 (V), operating on the ejector principle. Suction stops when the supply power to the valve is switched off. The integrated silencer reduces exhaust noise to a minimum.

Built-in solenoid valve for: - Vacuum ON/OFF

With the vacuum generators VADM-...-P/N the vacuum can be monitored by means of a vacuum switch.

VADM-...-P/-N with vacuum switch

- 1 = Pressure supply port
- 2 = Vacuum port
- 3 = Exhaust

VADMI-...

Vacuum generator VADMI-.../-...-P/-...-N with ejector pulse and vacuum switch

Compressed air enters the vacuum generator following the application of a voltage signal to the integrated solenoid valve, thereby creating a vacuum.

Once the voltage is switched off at the vacuum valve and switched on at the ejector valve, the vacuum is rapidly purged at port 2 as a result of the application of pressure. The integrated silencer reduces exhaust noise to a minimum.

- Two built-in solenoid valves for:
 - Vacuum ON/OFF
 - Ejector pulse
- With sensing interface
- With integrated non-return valve as safety function

With the vacuum generators VADMI-...-P/-N the vacuum can be monitored by means of a vacuum switch.

VADMI-...-P/-N with ejector pulse and vacuum switch

- 1 = Pressure supply port
- 2 = Vacuum port
- 3 = Exhaust

Features

Vacuum generator VADMI-...-LS-P/N with ejector pulse, vacuum switch and air-saving circuit

This vacuum generator is identically constructed to the other VADMI types. In addition, however, this ejector has a built-in vacuum switch with airsaving circuit:

If the vacuum level falls below the required range, vacuum generation is activated automatically (operating principle of vacuum switch for VADMI-...-LS-P/N → 6 / 1.2-12).

- Solenoid valve for vacuum generation
- Integrated silencer
- \blacksquare Integrated 40 μm filter with contamination indication
- With sensing interface for vacuum fault signal
- With integrated non-return valve as safety function
- With vacuum switch for pressure monitoring
- With 2 vacuum ports

VADM-...-LS-P/N with air-saving circuit PNP output

^{1 =} Pressure supply port

2 = Vacuum port

3 = Exhaust

Type codes

1.2

in the ordering data.

Possible combinations can be found

- 🗍 - Note

Vacuum generators VADM/VADMI Technical data

VADMI-...

Operating pressure 2 ... 8 bar

General technical d	ata												
Nominal size		45	45 70 95 140 200 300										
Design			Slim rectangular	Slim rectangular									
Operating medium			Compressed air, ur	mpressed air, unlubricated, grade of filtration to 40 μm									
Mounting position			Any	у									
Ejector features			High vacuum										
Type of mounting			Either: Via female thread, via through-holes										
Pneumatic connection	on 1/2		M5/M5	M5/G1⁄8	G1/8/G1/8	G1⁄8/G1⁄4	G1⁄4/G3⁄8	G1⁄4/G3⁄8					
Nominal size of lava	l nozzle	[mm]	0.45	0.7	0.95	1.4	2.0	3.0					
Operating pressure	VADM	[bar]	1.5 8										
	VADMI	[bar]	2 8										
Duty cycle		[%]	100										
Power consumption		[W]	1.4		1.5 piloted								
Protection class			IP65										

Ambient conditions										
Nominal size		45	70	95	140	200	300			
Ambient temperature	[°C]	-0 +60	+60							
Corrosion resistance	CRC ¹⁾	2								
Note on material		Free of copper, PTF	E and silicone							

1) Corrosion resistance class 2 according to Festo standard 940 070

Components requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents.

Weights [g]						
Nominal size	45	70	95	140	200	300
VADM	60	140	210	290	320	340
VADMP/-N	65	145	220	300	330	350
VADMI	85	170	240	320	350	370
VADMIP/-N/-LS-P	90	180	250	330	360	380

Vacuum generators Electropneumatic

Technical data

Vacuum Δp_u as a function of operating pressure p

Evacuation time t [s] for 1 litre volume at 6 bar operating pressure

-0.6

-0.7 -0.8

Air supply time for 1 litre volume at 6 bar operating pressure ¹⁾											
Туре	With ejector pulse	Without ejector pulse	Max. flow rate								
	[s]	[s]	[l/min]								
VADM-45	-	5.9	-								
VADMI-45	1.9	-	19.2								
VADM-70	-	2.2	-								
VADMI-70	0.59	-	68								
VADM-95	-	1.18	-								
VADMI-95	0.24	-	135								
VADM-140	-	0.69	-								
VADMI-140	0.19	-	200								
VADM-200	-	0.29	-								
VADMI-200	0.15	-	175								
VADM-300	-	0.26	-								
VADMI-300	0.2	-	160								

1) Time required to build up vacuum from -0.75 to -0.05 bar.

FESTO

0 -

-0.2

-0.3 -0.4 -0.5

∆p_u [bar]

Technical data

Noise level Lp as a function of operating pressure p (without suction flow)

Efficiency η as a function of vacuum Δp_u at P_{nom} 6 bar

Suction rate qn as a function of vacuum Δp_u

Vacuum generators Electropneumatic

Technical data

Vacuum switch for vacuum generators VADM...-...-P/N

Circuit diagram

- Piezo-resistive vacuum switch with adjustable switching point and adjustable hysteresis
- Switching status display, yellow LED Electrical connection, polarity safe

FESTO

C C	Gene
Vacuum generators Electropneumatic	Pneu
gen	Max.
Vacuum Electropi	Swite
Vacı Elec	Hyste
	Temp

1.2

General technical data		
Pneumatic data		
Max. operating pressure	[bar]	0 –0.95
Switching point	[bar]	0 –0.9 (adjustable)
Hysteresis	[bar]	0.05 0.5 (adjustable)
Temperature influence		≤ ±5 mbar/10K (on switching point)

Electrical data		
Operating voltage	[V DC]	24 (15 30)
Voltage drop	[V]	1.2 (at switch output)
Switch output current	[mA]	130
Max. intrinsic current	[mA]	25
consumption		
Max. switching delay	[ms]	5
Connection		Reverse polarity protected
Mechanical data		
Design		Piezo-resistive vacuum switch with adjustable switching point and hysteresis
Ambient conditions		
Protection class		IP65

Vacuum switch control panel

- 1 Switching status display, yellow LED
- 2 Switching point adjustment
- 3 Hysteresis adjustment

Terminal allocation

BN	= Brown
WH	= White
BK	= Black
BU	= Blue
R_L	= Load

Pin allocation

1

1	Brown:	Positive terminal
2	White:	NC contact
3	Blue:	Negative terminal
4	Black:	NO contact

Technical data

Energy-saving function with VADMI-...-P/N

The conventional vacuum switch → A cost-effective energy-saving measure

With the vacuum generators VADMI a maximum value is first set and then the hysteresis is regulated (reliable operating range). The lower limit defines the minimum value. Once the vacuum level is within this range, reliable workpiece transport is guaranteed.

The functional sequence

RP Ejector pulse

- VG Vacuum on/off
- E Vacuum generator
- Non-return valve Vacuum switch

D

А

Vacuum on

1 External controller F switches on the VG solenoid

The vacuum generator VADMI is only

activated by the external controller if

the level drops below the minimum

value and is deactivated again once

that minimum value is regained.

- → Valve for compressed air supply B is opened
 → Vacuum generation E is activated

Vacuum stop

- 2 The specified maximum level is achieved:
 - ightarrow Pressure sensor A sends a signal to the external controller
 - ightarrow Controller switches the VG solenoid off
 - → Vacuum generation is interrupted
 - → Non-return valve D prevents the vacuum level from being purged

Vacuum on

- 3 Leakage causes the vacuum level to drop to the minimum value
 - ightarrow Pressure sensor A sends a signal to the external controller F
 - ightarrow Controller F switches the VG solenoid B back on
 - ightarrow Vacuum generation E is active again
 - ➔ Constant repetition of points 2 and 3

Cycle ended: Vacuum off

- 4 Transport process ended
 - → External controller (PLC) F deactivates VG solenoid B
 - ➔ Vacuum generation E is ended
 - → External controller switches on ejector RP solenoid C
 - → Vacuum level at 0
 - → Workpiece is released

FESTO

A non-return valve prevents the

vacuum level from being purged

generation.

during the inactive phase of vacuum

Technical data

Vacuum switch and cable set for vacuum generators with air-saving circuit VADMI-...-LS-P/N

Circuit diagram

- Piezo-resistive vacuum switch with adjustable switching point and adjustable hysteresis
- Air-saving circuit only in conjunction with supplied cable
- Switching status display, yellow LED
- Electrical connection, polarity safe

FESTO

General technical data		
Pneumatic data		
Max. operating pressure	[bar]	01
Max. overload pressure	[bar]	5 (for t <1 min)
Switching point	[bar]	0 –0.9 (adjustable)
Hysteresis	[bar]	0.1 0.6 (adjustable)
Temperature influence		≤ ±10 mbar/10K (on switching point)
Electrical data		
Operating voltage	[V DC]	24 V (±10%, at VADMI-70-LS-P +10%-5%)
Voltage drop [V] 1.2 (at switch output		1.2 (at switch output)
Switch output current	[mA]	130
Max. intrinsic current	[mA]	25
consumption		
Max. switching delay	[ms]	2 (with NPN cable distribution: 20 ms)
Connection		Reverse polarity protected
Mechanical data		
Design		Piezo-resistive vacuum switch with integrated air-saving circuit
A 1 1 / 11/1		
Ambient conditions		
Protection class		IP65

Function principle

In conjunction with the supplied cable set, the vacuum generator VADMI-...-LS-P/N contains an airsaving circuit. The vacuum range to be used to hold the workpiece is set on the switch using both potentiometers. The switch generates a pulsating signal A2 which only actuates the solenoid for vacuum ON/OFF in the vacuum generator when the vacuum pressure has fallen below the selected upper limit value due to leakage etc.

At all other times, the vacuum is maintained with the help of the nonreturn valve, even when the vacuum generator is not switched on. In addition to this, status signal A1 can be interrogated which is connected to +24 V during normal operation, but which is switched to 0 whenever vacuum pressure falls below the critical value by 150 mbar due to a malfunction.

This is the case, for example, if the workpiece has dropped off from the suction cup and it is no longer possible to generate the selected vacuum.

Accessories (included in scope of delivery):

■ Connecting cable

The switch may only be operated with the included cable set. Connections 1, 2 and 4 can nevertheless be interchanged with one another without damaging the device.

Electropneumatic

1.2

Vacuum generators

Technical data

Technical data

Energy-saving function and error reporting with VADMI-...-LS-P/N $\ensuremath{\mathsf{VADMI}}$

The further development of the vacuum switch

In addition to the described functions, error reporting is also used as an additional energy-saving measure. This like the vacuum circuit is controlled via the vacuum switch. If a suction cup does not pick up a workpiece properly or a tube bursts, the vacuum switch can report such an event to the external control unit (PLC) F so that this or the user can take the necessary steps.

The functional sequence

Vacuum generators

1.2

Electropneumatic

- VG Vacuum on/off
- E Vacuum generator
- D Non-return valve
- C Ejector pulse

G Branching

A Vacuum switch

Start signal

- 1 External controller F activates the pressure sensor
 - → Pressure sensor A checks the vacuum status
 - ➔ No vacuum present

Given the decentrally controlled

of the vacuum circuit (air-saving

circuit) would be superfluous. As a

switching function, external actuation

result there is significantly less wiring.

Vacuum on

- 2 Pressure sensor activates the VG solenoid B
 - ightarrow Valve for compressed air supply is opened
 - ➔ Vacuum generation E is activated
- 3 Vacuum level 150 mbar below the maximum level is exceeded
 - → Pressure sensor sends an enable signal to external controller (PLC) F BK
 - ➔ Transport process can start

Vacuum stop

- 4 The specified maximum level is achieved
 - ightarrow Pressure sensor A switches the VG solenoid off
 - ➔ Compressed air supply stopped
 - ➔ Vacuum generation E interrupted
 - → Non-return valve D prevents the vacuum level from being purged

Vacuum on

- 5 Leakage causes the vacuum level to drop to the minimum value
 - → Pressure sensor A switches the VG solenoid on again
 - → Vacuum generation E is active again

Fault: Transport stopped

- 6 Major leakage causes an overly large drop in the vacuum level
 - → Vacuum generator E cannot compensate for the drop in level
- 7 Vacuum level is 150 mbar below the minimum value
 - → Pressure sensor A sends an error message to the external controller (PLC) F BK
 - → External controller interrupts the transport process
 - → Vacuum generation E is ended

Cycle ended: Vacuum off

- 8 Transport process ended
 - → External controller (PLC) F deactivates VG solenoid
 - → Vacuum generation E is ended
 - → External controller F switches on ejector RP solenoid C WH
 - → Ejector pulse activated
 - ➔ Workpiece is released

Technical data

Connection to PLC

PNP and NPN switching of the VADMI-...-LS-P/N

The three control and supply cable harnesses are combined in a branching directly via the vacuum generator so that only one cable containing one signal wire and three voltage supply wires need to be conducted from the branching to the PLC.

In principle there are two different signal characteristics with external control units (PLC) for the vacuum generator VADMI-LS, which differ only slightly in their mode of operation. As both versions are identical in terms of the vacuum generator and the vacuum switch, the signal flow is only converted in the branching, as this is the only difference between the models.

The labelled plug-in connectors for the wiring harness are connected to the relevant elements of the VADMI-LS. The four-wire cable splice of the branching is connected to the control unit in the manner depicted below.

FESTO

PNP circuit

- WH = White for ejector pulse RP
- BU = Blue for ground

NPN circuit

Technical data

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45	56	41	33.6	25	3.6	11	16	41	56	7.9	1.9	36.3	4
VADM-70	73.3	58.3	40.4	21	14.2	11	22	52.4	76.1	9.4	1.9	53.7	4.5
VADM-95	73.8	61	43.3	8.7	13.2	9.7	24.5	61	78.8	9.5	2.3	55	4.5
VADM-140	96.8	84	26	12.5	28.5	9.7	24.5	61	96.8	13.8	2.3	79.4	5
VADM-200	96.8	84	26	12.5	28.5	9.7	24.5	61	101.8	12.5	2.3	79.4	5
VADM-300	133.2	120.4	26	12.5	28.5	9.7	24.5	61	137.4	12.5	2.3	115.8	5

Technical data

Vacuum generators VADM/VADMI Technical data

Vacuum generators Electropneumatic

1.2

Туре	B1	B2	B3	D1	D2	D3 Ø	D4	H1	H2	H3	H4	H5	H6	H7
VADMI-45	10	6.2	10	M5	M5	3.2	M2	78.2	58.2	40.8	23.8	23.8	43.4	18
VADMI-70	15	11.2	15	G1⁄8	M5	3.2	M2	88.9	64.4	47	26.5	23.5	48.8	18
VADMI-95	18	13.4	18	G1⁄8	G1⁄8	4.2	M2.5	99.4	69.4	48.9	25.5	23.3	33	18
VADMI-140	22	16.6	18	G1⁄4	G1⁄8	5.2	M3	113.4	83.4	61.4	41.4	41.4	36	17.5
VADMI-200	22	16.6	18	G3⁄8	G1⁄4	5.2	M3	119.4	89.4	67.7	41.4	41.4	40	19
VADMI-300	22	16.6	18	G3⁄8	G1⁄4	5.2	M3	119.4	89.4	67.7	41.4	41.4	40	19

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADMI-45	56	41	33.6	25	3.6	11	33	55	56	7.9	1.9	36.3	4
VADMI-70	73.3	58.3	40.4	21	14.2	11	45	67	76.1	9.4	1.9	53.7	4.5
VADMI-95	73.8	61	43.3	8.7	13.2	5.7	49.5	61	78.8	9.5	2.3	55	4.5
VADMI-140	96.8	84	26	12.5	28.5	5.7	49.5	61	96.8	13.8	2.3	79.4	5
VADMI-200	96.8	84	26	12.5	28.5	5.7	49.5	61	101.8	12.5	2.3	79.4	5
VADMI-300	133.2	120.4	26	12.5	28.5	5.7	49.5	61	137.4	12.5	2.3	115.8	5

Technical data

1) Plug sockets are included in the scope of delivery for type ... -LS-

114.4

150.8

84

120.4

28.4

28.4

26

26

12.5

12.5

28.5

28.5

5.7

5.7

49.5

49.5

61

61

101.8

137.4

12.5

12.5

2.3

2.3

79.4

115.8

VADMI-200-LS-P

VADMI-300-LS-P

FESTO

1.2

5

5

Vacuum generators VADM/VADMI Technical data

Ordering da	ta								
Size	Solenoid coils	Without vacuum switch	With vacuum switch	With vacuum switch					
			PNP output	NPN output					
		Part No. Type	Part No. Type	Part No. Type					
Without ejec	tor pulse								
45	MZB	162 500 VADM-45	162 512 VADM-45-P	162 513 VADM-45-N					
70	MYB	162 501 VADM-70	162 514 VADM-70-P	162 515 VADM-70-N					
95	MEB	162 502 VADM-95	162 516 VADM-95-P	162 517 VADM-95-N					
140	MEB	162 503 VADM-140	162 518 VADM-140-P	162 519 VADM-140-N					
200	MEB	162 504 VADM-200	162 520 VADM-200-P	162 521 VADM-200-N					
300	MEB	162 505 VADM-300	162 522 VADM-300-P	162 523 VADM-300-N					
With ejector	pulse								
45	MZB	162 506 VADMI-45	162 524 VADMI-45-P	162 525 VADMI-45-N					
70	MYB	162 507 VADMI-70	162 526 VADMI-70-P	162 527 VADMI-70-N					
95	MEB	162 508 VADMI-95	162 528 VADMI-95-P	162 529 VADMI-95-N					
140	MEB	162 509 VADMI-140	162 530 VADMI-140-P	162 531 VADMI-140-N					
200	MEB	162 510 VADMI-200	162 532 VADMI-200-P	162 533 VADMI-200-N					
300	MEB	162 511 VADMI-300	162 534 VADMI-300-P	162 535 VADMI-300-N					

1.2

Ordering data								
Size	Solenoid coils	With vacuum switch						
		PNP output		NPN output				
		Part No. Type		Part No. Type				
With ejector pulse and air-saving circuit								
45	MZB	171 053 VADMI-45-LS-P		171 054 VADMI-45-LS-N				
70	MYB	171 055 VADMI-70-LS-P		171 056 VADMI-70-LS-N				
95	MEB	171 057 VADMI-95-LS-P		171 058 VADMI-95-LS-N				
140	MEB	171 059 VADMI-140-LS-P		171 060 VADMI-140-LS-N				
200	MEB	171 061 VADMI-200-LS-P		171 062 VADMI-200-LS-N				
300	MEB	171 063 VADMI-300-LS-P		171 064 VADMI-300-LS-N				

ļ -Note -

With vacuum generators VADMI-...-LS-P/N , the plug sockets with cable for solenoid coils and vacuum switches are included in the scope of supply. These vacuum generators may only be operated with the cable supplied.

