Ejes de accionamiento por husillo ELGD-BS-WD

Características

Información resumida

ELGD-BS (versión estándar)

- Sección transversal de perfil cuadrada con elementos de accionamiento fuertes para fuerzas de avance elevadas
- Idoneidad para la producción de baterías de iones de litio

ELGD-BS-WD (versión ancha)

- La altura reducida del perfil ofrece dimensiones de montaje menores para sistemas de manipulación y aplicaciones que no requieren fuerzas de avance tan altas
- Un 30 % más ligero, pero con una rigidez y una capacidad de carga de las guías similares a las del eje de la versión estándar
- Idoneidad para la producción de baterías de iones de litio

Tecnología de guiado innovadora

- Gran rigidez y capacidad de carga de las guías para soportar una mayor carga en el mismo espacio de montaje
- Unas menores vibraciones y un movimiento más suave del carro protegen las piezas delicadas
- · Las altas velocidades y una vida útil muy larga garantizan ciclos cortos y tiempos de inactividad mínimos

Elementos de accionamiento potentes

- Fuerzas de avance y aceleraciones elevadas para lograr tiempos de proceso más cortos
- La larga vida útil y la mayor fiabilidad reducen el coste total de propiedad

Solución de cinta de recubrimiento innovadora de acero inoxidable

- La superficie limpia y sin abrasión protege las piezas de las partículas
- El número de partículas reducido permite el uso en salas limpias
- Menor penetración de la suciedad que permite el uso en condiciones ambientales severas

Libre elección:

• Carro prolongado o adicional para momentos axiales y transversales mayores, así como cargas más elevadas

Conexión de aire de barrido:

- Mediante la conexión de aire de barrido se produce un intercambio de aire entre el interior del cilindro y el entorno. De esta manera se evita que se produzca depresión o sobrepresión dentro del cilindro.
- Generación de una ligera depresión que impide la emisión de partículas
- Generación de una ligera sobrepresión que impide la inmisión de partículas

Herramientas de ingeniería

Información adicional → electric-motion-sizing

Ahorre tiempo con las herramientas de ingeniería Smart Engineering para obtener la solución óptima. Nuestro compromiso es aumentar su productividad. Para ello, una importante contribución son nuestras herramientas de ingeniería. Estas herramientas le permiten dimensionar correctamente su sistema, aprovechar reservas inéditas de productividad o incrementar la producción a lo largo de toda la cadena de creación de valor. Desde el primer contacto hasta la modernización de su máquina: en cada fase de su proyecto descubrirá numerosas herramientas que le serán de gran ayuda.

Electric Motion Sizing

• La forma rápida y segura de conseguir el conjunto de accionamiento óptimo: a partir de unos pocos datos de la aplicación, Electric Motion Sizing calcula las combinaciones adecuadas de eje eléctrico, motor eléctrico y regulador de servoaccionamiento. De esta forma obtiene todos los datos relevantes para la combinación seleccionada, incluidas la lista de piezas y la documentación. Así se evitan configuraciones erróneas, y se consigue una mejor eficiencia energética del sistema. Además, la compatibilidad con Festo Automation Suite le facilita la puesta en funcionamiento.

Gráficos

Información adicional → elgd-bs

Los gráficos mostrados en este documento también están disponibles en línea. Allí es posible mostrar valores precisos.

Características

Tipo de accionamiento

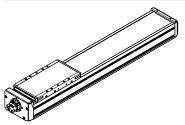
[BS] Husillo de bolas

- Para aplicaciones en las que la precisión es vital
- Alta fiabilidad y larga vida útil
- Para grandes cargas

Reserva de carrera

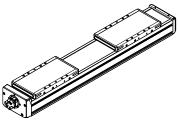
- La reserva de carrera es una distancia de seguridad respecto a la posición final mecánica que no se utiliza en el funcionamiento regular.
- La suma de la longitud de carrera y 2 veces la reserva de carrera no debe superar la carrera de trabajo máxima.

Paso del husillo


El paso del husillo describe en milímetros la distancia recorrida por la tuerca del husillo con cada vuelta del mismo.

Apoyo del husillo

El apoyo del husillo permite ejecutar movimientos a máxima velocidad en todas las longitudes de carrera.


Ejecución del carro

[L] Largo

Carro adicional

[ZR] Derecha

- El lado en el que está colocado el etiquetado se define como el lado delantero.
- Actualmente solo está disponible el carro adicional a la derecha (en el lado alejado del motor)

Lubricación

[] Estándar

Lubricado de por vida. Entrega sin boquilla de lubricación.

[GN] Boquilla de lubricación

- La guía puede lubricarse de manera permanente mediante sistemas automáticos o semiautomáticos de lubricación posterior utilizando los adaptadores de lubricación
- Los adaptadores son aptos para aceites y grasas

Códigos del producto

001	Serie	
ELGD	Eje de pórtico	
002	Tipo de actuador	
BS	Husillo de bolas	
003	Guía	
KF	Guía de rodamiento de bolas	
004	Tipo de construcción	
WD	Ancho	
005	Tamaños	
100	100	
006	Carrera [mm]	
100	100	
200	200	
300	300	
400	400	
500	500	
600	600	
800	800	
	50 1000	

007	Reserva de carrera
ОН	Sin
Н	0 999 mm
008	Paso de husillo
10P	10 mm
009	Ejecución con carro
L	Carro, largo
010	Carro adicional
	Sin
ZR	1 carro a la derecha
011	Lubricación
	Estándar
GN	Boquilla de lubricación

Especificaciones técnicas generales		
Tamaño		100
Forma constructiva		Eje electromecánico con husillo de bolas
Guía		Guía de rodamiento de bolas
Posición de montaje		Indistinta
Carrera de trabajo	[mm]	50 1000
Fuerza de avance máx. F _x		
con conjunto de sujeción axial	[N]	1100
con conjunto paralelo	[N]	1070
Momento de giro sin carga con	[Nm]	0,051
velocidad de desplazamiento reducida	[m/s]	0,05
Momento de giro sin carga con	[Nm]	0,077
velocidad máx. de desplazamiento	[m/s]	0,5
Fuerza radial máxima ¹⁾	[N]	180
Revoluciones máximas ²⁾	[rpm]	8000
Velocidad máxima	[m/s]	1,33
Aceleración máxima	[m/s ²]	15
Precisión de repetición	[mm]	±0,01
Juego de inversión	[mm]	0,15
Detección de posiciones		Mediante sensores de proximidad

¹⁾ En el vástago de accionamiento

²⁾ Las revoluciones y la velocidad dependen de la carrera

Condiciones de funcionamiento y del entorno		
Temperatura ambiente ¹⁾	[°C]	0+60
Grado de protección		IP30
Tiempo de utilización	[%]	100
Intervalo de mantenimiento		Lubricación de por vida

¹⁾ Debe tenerse en cuenta el ámbito de aplicación de los sensores de proximidad

Pesos [g]	
Tamaño	100
Peso básico con carrera de 0 mm ¹⁾	2979
Peso adicional por cada 10 mm de carrera	59
Masa móvil	1185

¹⁾ Incl. carro

Tamaño		100
Diámetro	[mm]	10
Paso	[mm/	10
	giro]	

Momento de inercia de la masa

Tamaño		100
Jo	[kg mm ²]	5,632
J _H por metro de carrera	[kg mm ² /m]	7,554
J _L por kg de carga útil	[kg mm ² /kg]	2,533

El momento de inercia de la masa $\,$

 $J_A = J_O + J_H x$ carrera de trabajo [m] + $J_L x$ $m_{carga \, \acute{u}til}$ [kg]

J_A del eje completo se calcula de

la siguiente manera:

Referenciado

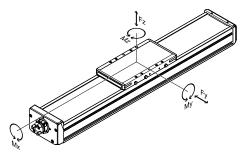
El referenciado se puede realizar de dos formas:

- contra tope fijo
- a través del interruptor de referencia

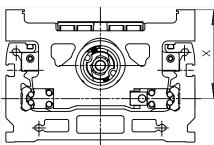
Para ello deben respetarse los siguientes valores:

Tamaño		100
Energía máx. de impacto	[mJ]	1
Nota sobre la energía de impacto en las	[m/s]	A la velocidad máxima del recorrido de referencia de 0,01 m/s
posiciones finales		

Materiales


Eje	
Tapa del accionamiento	Aluminio de fundición en coquilla, pintado
Tuerca del husillo	Acero
Husillo	Acero
Carro	Aleación forjada de aluminio
Cinta de recubrimiento	Acero inoxidable de alta aleación
Guía	Acero
Perfil	Aleación forjada de aluminio anodizado
Nota sobre los materiales	En conformidad con la Directiva 2002/95/CE (RoHS)
Conformidad PWIS	VDMA24364-Zona III
Idoneidad para la fabricación de baterías de iones	No pueden utilizarse metales con un contenido de cobre, zinc o níquel superior al 1 %. Quedan exceptuados el
de litio	níquel en aceros, superficies niqueladas químicamente, placas de circuito impreso, cables, conectores eléctricos y bobinas

Valores característicos de las cargas

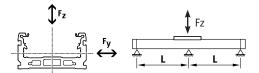

Las fuerzas y los momentos indicados se refieren al centro de la guía. El punto de ataque es la intersección del centro de la guía y la línea central longitudinal del carro.

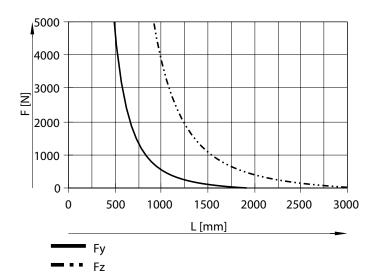
El tamaño apropiado se selecciona mediante los siguientes tres pasos:

- 1. Comprobar los valores máximos admisibles (no deben excederse)
- 2. Calcular el factor comparativo de la carga
- 3. Determinar la vida útil

Distancia entre la superficie del carro y el centro de la guía

Distancia entre la superficie del carro y el centro de la guía		
Tamaño		100
Medida x	[mm]	47


1. Comprobar los valores máximos admisibles


Fuerzas y momentos máximos admisibles del eje completo (límites de resistencia)			
Tamaño		100	
Fuerza Fy máx. del eje completo	[N]	3236	
Fuerza Fz máx. del eje completo	[N]	2250	
Momento Mx máx. del eje completo	[Nm]	160	
Momento My máx. del eje completo	[Nm]	230	
Momento Mz máx. del eje completo	[Nm]	191	

Distancia máxima admisible entre apoyos L en función de la fuerza F

Para limitar la flexión si las carreras son largas, deberán preverse en caso necesario apoyos para el eje.

Los siguientes gráficos pueden utilizarse para determinar la distancia L máxima admisible entre apoyos en función de la fuerza ejercida F. La flexión es de $f=0.5\,$ mm.

2. Calcular el factor comparativo de la carga

Nota

Para una vida útil del sistema de guía de 5000 km, el factor comparativo de la carga debe adoptar un valor de fv ≤ 1 tomando como base las fuerzas y los momentos máximos admisibles para una vida útil de 5000 km.

Con esta fórmula se puede calcular un valor orientativo.

Para el cálculo exacto puede utilizarse el software de ingeniería "Electric Motion Sizing"

→ www.festo.com/x/electric-motion-sizing

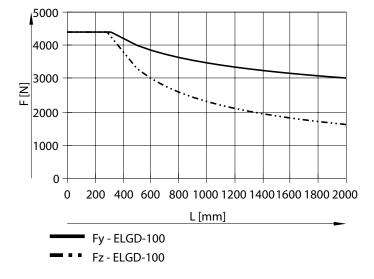
Si el eje está expuesto simultáneamente a varios de los momentos y fuerzas indicados más abajo, además de las cargas máximas indicadas deberá cumplirse la siguiente ecuación:

Cálculo del factor comparativo de la carga:

$$f_v = \frac{\left|F_{y1}\right|}{F_{y2}} + \frac{\left|F_{z1}\right|}{F_{z2}} + \frac{\left|M_{x1}\right|}{M_{x2}} + \frac{\left|M_{y1}\right|}{M_{y2}} + \frac{\left|M_{z1}\right|}{M_{z2}} \leq 1$$

 F_1/M_1 = valores que se producen en la aplicación

F₂ = valores admisibles con 5000 km del gráfico de distancia entre apoyos y carga


M₂ = valores máximos admisibles (véase la tabla)

Momentos máximos admisibles para el cálculo de la guía con vida útil de referencia					
Tamaño		100			
Vida útil de referencia	[km]	5000			
Momento máximo Mx	[Nm]	140			
Momento máximo My	[Nm]	230			
Momento máximo Mz	[Nm]	220			

Distancia máxima admisible entre apoyos L en función de la fuerza F

Dependiendo de la distancia entre los apoyos del eje, las fuerzas máximas admisibles varían debido al diseño del sistema de guía.

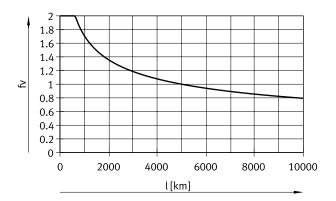
Si el eje se utiliza como voladizo o en modo de yugo, pueden seleccionarse los valores de una distancia entre apoyos de 2000 mm.

3. Determinar la vida útil

La vida útil de la guía depende de la carga. Para poder estimar aproximadamente la vida útil, en el siguiente gráfico se muestra el factor comparativo de la carga fy como característica en relación con la vida útil.

Esta representación solamente proporciona el valor teórico. Si el factor comparativo de la carga fv es superior a 1,3, es imprescindible consultar a su persona de contacto local de Festo.

Factor comparativo de la carga f_v en función de la vida útil l


Ejemplo:

Un usuario quiere mover una masa de x kg. Mediante el cálculo con la fórmula (\Rightarrow página 8) se obtiene un valor de 1,3 para el factor comparativo de la carga f_v . Según el gráfico, la guía tiene en ese caso una vida útil de aproximadamente 2500 km. Reduciendo la aceleración, se reducen los valores Mz y My. Ahora, con un factor comparativo de la carga f_v de 1, la vida útil que se obtiene es de 5000 km.

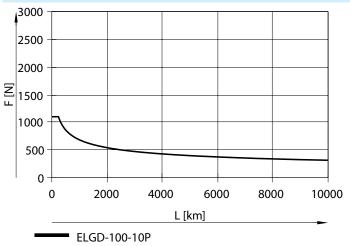
Nota:

Si la aplicación se ha calculado con "Electric Motion Sizing", el resultado de la carga de la guía se corresponde con el factor comparativo medio de la guía.

(El 100 % del valor comparativo medio de la guía corresponde a fv = 1). Con este valor puede estimarse la vida útil utilizando el gráfico de vida útil

Comparativa de los valores característicos de las cargas con 100 km con fuerzas y momentos dinámicos de las guías de rodamiento de bolas

Los valores característicos de las cargas de las guías de rodamiento están normalizados según ISO y JIS mediante fuerzas y momentos dinámicos y estáticos. Estas fuerzas y momentos se basan en una esperanza de vida útil del sistema de guía de 100 km según ISO o de 50 km según JIS.

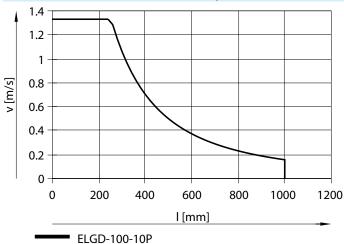

Debido a que los valores característicos de las cargas dependen de la vida útil, las fuerzas y momentos máximos admisibles para una vida útil de 5000 km no pueden compararse con las fuerzas y momentos dinámicos de las guías de rodamientos según ISO/JIS.

Para facilitar la comparación de la capacidad de guiado de los ejes lineales ELGD con guías de rodamientos, se incluyen en la siguiente tabla las fuerzas y los momentos teóricamente admisibles para una vida útil calculada de 100 km. Esto corresponde a las fuerzas y momentos dinámicos según ISO.

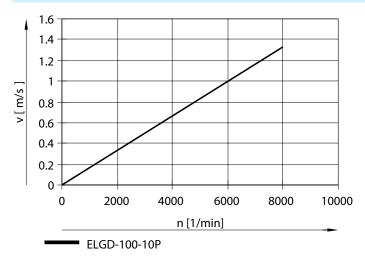
Estos valores para 100 km se han determinado solo mediante cálculo y sirven exclusivamente para comparar con las fuerzas y momentos dinámicos según ISO. No debe someterse a los actuadores a una carga con estos valores característicos ya que podría causar daños en los ejes.

Fuerzas y momento	Fuerzas y momentos máximos admisibles para una vida útil teórica de 100 km (solo se considera la guía)					
Tamaño		100				
Fy _{máx.}	[N]	18415				
Fz _{máx}	[N]	18415				
Mx _{max} .	[Nm]	645				
My _{max} .	[Nm]	720				
Mz _{max} .	[Nm]	720				

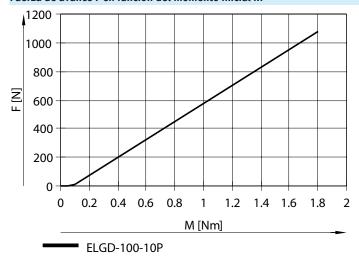
Fuerza de avance F en función de la distancia L

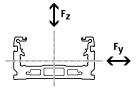

Fuerza de avance máx. F en función de la carrera de trabajo l

La fuerza de avance que presiona el husillo en la dirección del motor debe limitarse en función de la carrera debido a posibles pandeos (p. ej., aceleración de una carga que se desplaza hacia el motor). La fuerza de avance en sentido contrario no se ve afectada por ello.



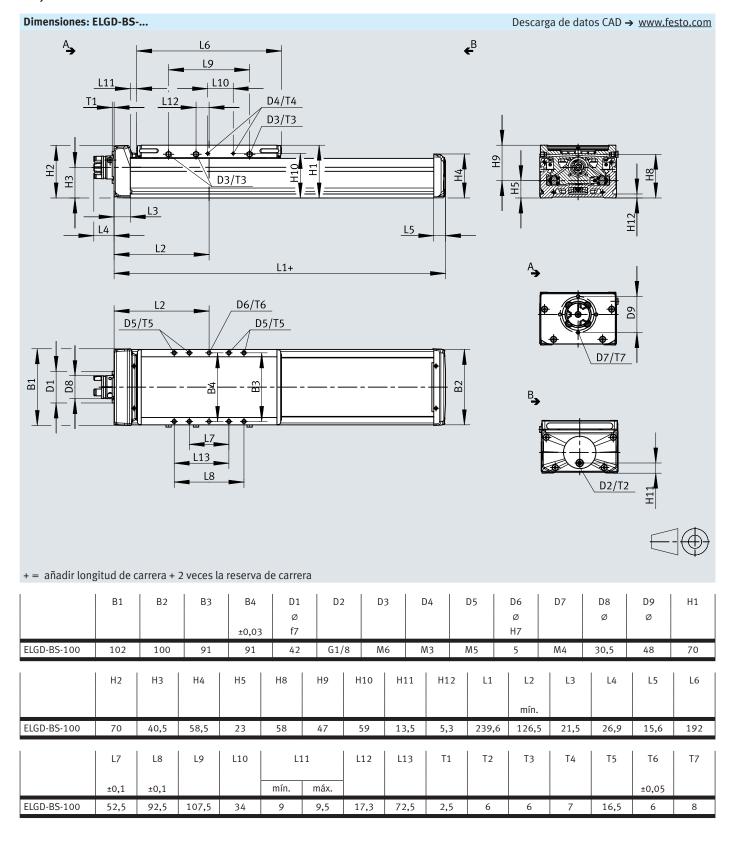
Velocidad v en función de la carrera de trabajo l


10


Velocidad v en función de las revoluciones n

Fuerza de avance F en función del momento inicial M

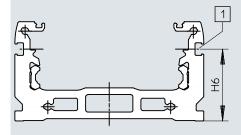
Segundos momentos de inercia



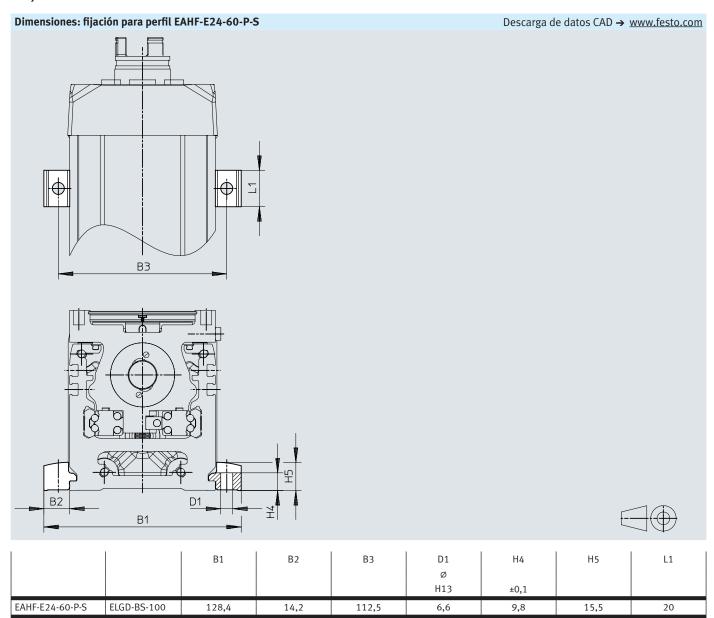
Tamaño		100
ly	[mm ⁴]	0,347x10 ⁶
Iz	[mm ⁴]	2,268x10 ⁶

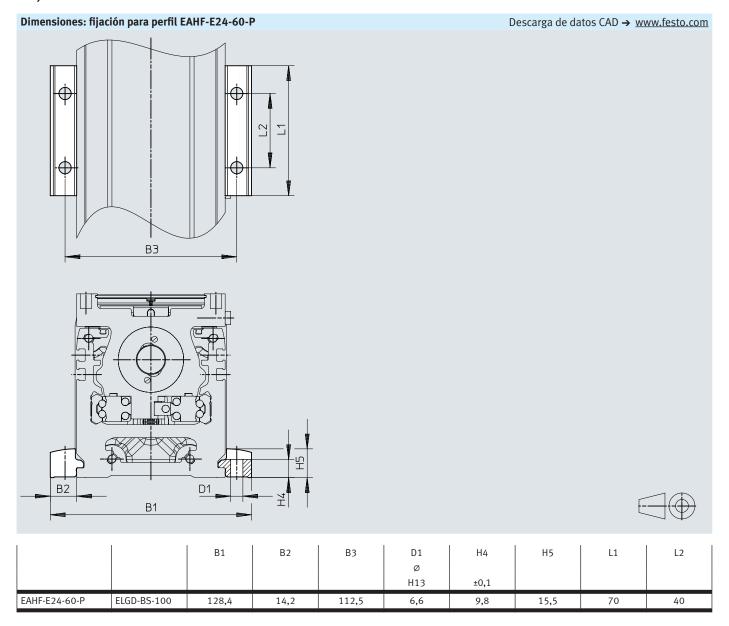
Valores límite de flexión recomendados

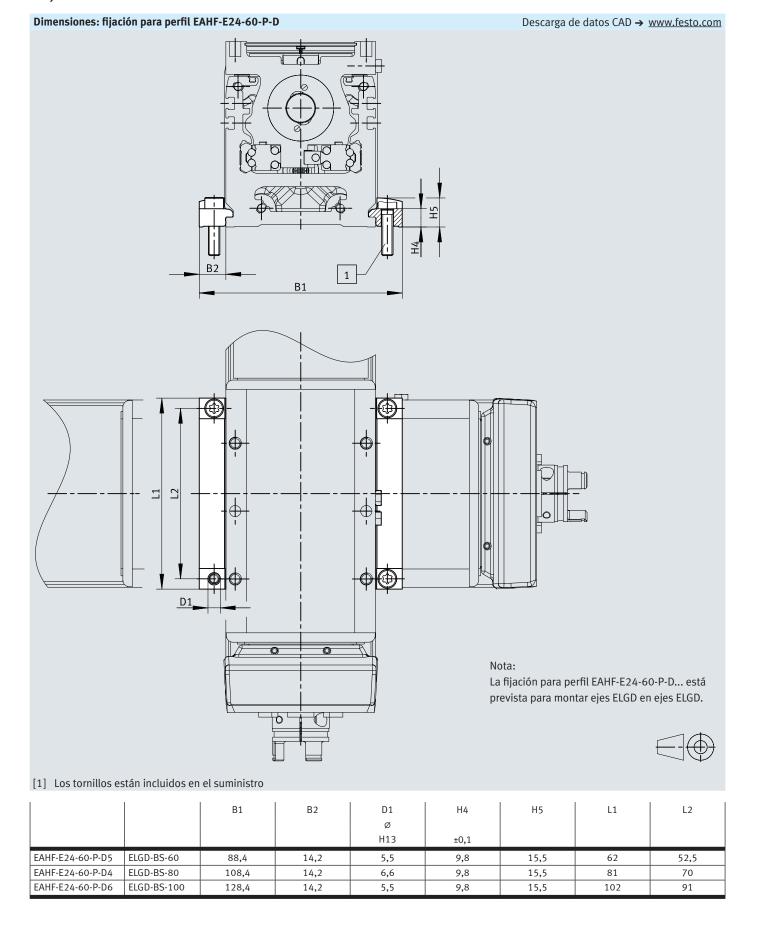
Para no mermar el funcionamiento de los ejes, se recomienda respetar los siguientes valores límite de la flexión. Una mayor deformación puede provocar mayor fricción, producir más desgaste y disminuir la vida útil.

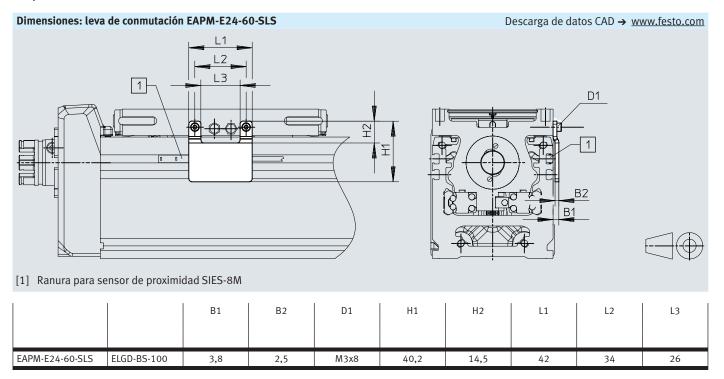

Tamaño	Flexión dinámica (carga móvil)	Flexión estática (carga detenida)
60, 80	0,05 % de la longitud del eje, máximo 0,5 mm	0,1 % de la longitud del eje

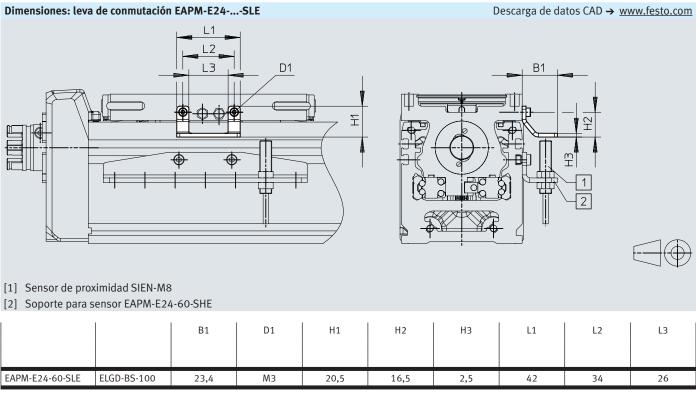
Dimensiones: ELGD-BS-...-ZR (con carro adicional) Descarga de datos CAD → www.festo.com L6 L3 L3 (Distancia mínima) ELGD-BS-100 Descarga de datos CAD → www.festo.com

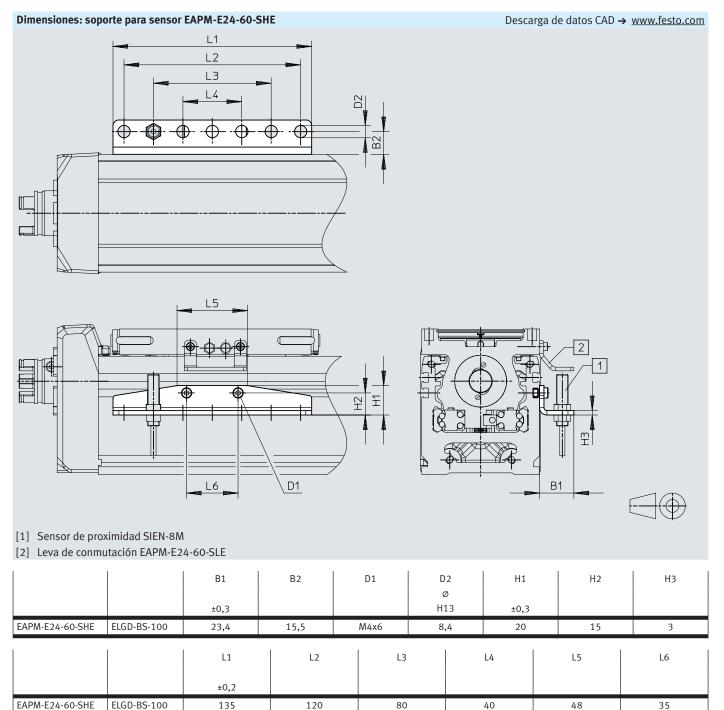

Dimensiones: ELGD-BS-...- (perfil)

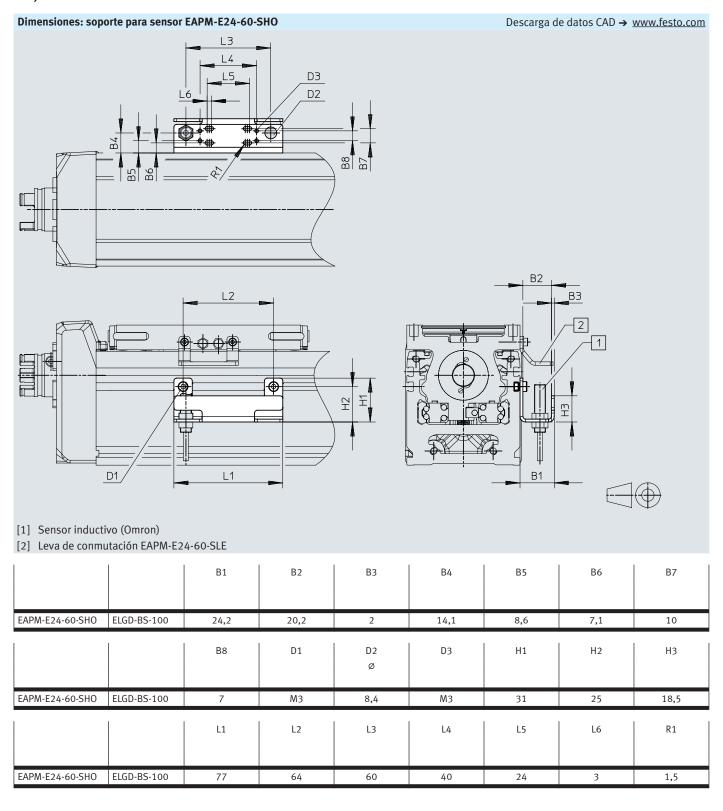

Descarga de datos CAD \rightarrow www.festo.com

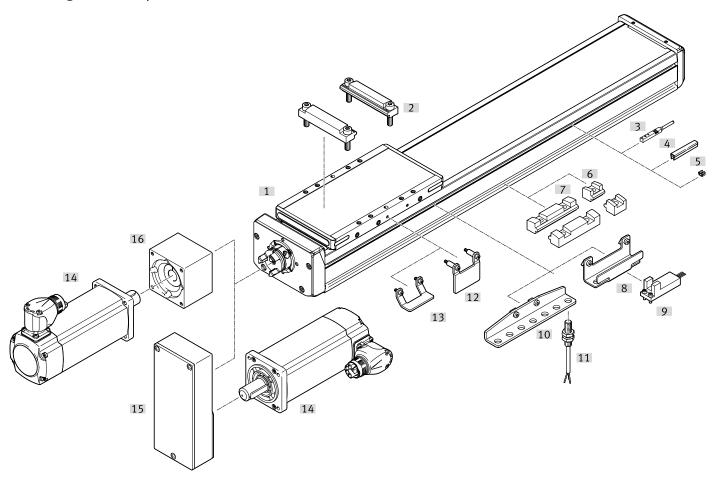



[1] Ranura para sensor de proximidad





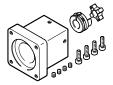




Referencias de pedido					
	Tamaño	Paso del husillo [mm]	Carrera [mm]	N.º art.	Código de producto
	100	10	100	8192320	ELGD-BS-KF-WD-100-100-0H-10P-L
			200	8192321	ELGD-BS-KF-WD-100-200-0H-10P-L
			300	8192322	ELGD-BS-KF-WD-100-300-0H-10P-L
			400	8192323	ELGD-BS-KF-WD-100-400-0H-10P-L
			500	8192324	ELGD-BS-KF-WD-100-500-0H-10P-L
			600	8192325	ELGD-BS-KF-WD-100-600-0H-10P-L
			800	8192326	ELGD-BS-KF-WD-100-800-0H-10P-L
			1000	8192327	ELGD-BS-KF-WD-100-1000-0H-10P-L

Referencias de pedido: producto mod	Referencias de pedido: producto modular						
	Tamaño	Carrera [mm]	N.º art.	Código de producto			
	100	50 1000	8176878	ELGD-BS-KF-WD-100			

Cuadro general de periféricos



Cuadro general de periféricos

ALLES	s orios Código de producto	Descripción	Dáging/Into
			→ Página/Internet
[1]	Eje de accionamiento por husillo ELGD-BS-WD	Actuador eléctrico	elgd-bs
[2]	Fijación para perfil EAHF-E24D	Para el montaje entre ejes con placa adaptadora	24
[3]	Sensor de proximidad para ranura en T SIES-8M	Sensor de proximidad inductivo para ranura en T	25
[4]	Tapa de la ranura ABP-S	Para la protección contra el ensuciamiento	26
[5]	Clip SMBK	Para la fijación del cable del sensor de proximidad en la ranura	26
[6]	Fijación para perfil EAHF-E24S	Para la fijación lateral del eje en el perfil	24
[7]	Fijación para perfil EAHF-E24	Para la fijación lateral del eje en el perfil	24
[8]	Soporte para sensor EAPM-E24-SHO	Para la fijación de sensores de terceros al eje	25
[9]	Sensor OMRON	Sensor de terceros OMRON, serie EE-SX674	-
[10]	Soporte para sensor EAPM-E24-SHE	Para la fijación de los sensores de proximidad inductivos SIEN-M8 (redondos) en el eje	25
[11]	Sensor de proximidad, M8 SIEN-M8	Sensor de proximidad inductivo, redondo	25
[12]	Leva de conmutación EAPM-E24-SLS	Para consultar la posición del carro con un sensor de proximidad inductivo SIES-8M o para sensores ópticos (Omron) con soporte para sensor EAPM-E24-SHO	24
[13]	Leva de conmutación EAPM-E24-SLE	Para consultar la posición del carro con un sensor de proximidad inductivo SIEN-M8 (redondo) y un soporte para sensor EAPM-E24-SHE	24
[14]	Motor Motores y kits especialmente adaptados al eje EMMT Información detallada: www.festo.com/catalogue/eamm Herramienta de ingeniería: www.festo.com/x/electric-motion-sizing		emmt
[15]	Conjunto paralelo EAMM	Para el montaje del motor en paralelo	eamm-u
[16]	Conjunto de sujeción axial EAMM	Para el montaje axial del motor	eamm-a

Accesorios

Combinaciones admisibles de eje y motor para conjuntos de sujeción axial y conjuntos paralelos

En los siguientes enlaces encontrará toda la información sobre:

- Combinaciones de eje y motor
- Motores externos admisibles
- Especificaciones técnicas
- Dimensiones

para tamaño 100

Para conjuntos de sujeción axial → Internet: <u>eamm-a</u>
Para conjuntos paralelos → Internet: <u>eamm-u</u>

	Descripción	Idoneidad para la pro- ducción de baterías de iones de litio	Material	Peso del producto	N.º art.	Código de producto
	para tamaño 100	F1a	Aleación forjada de aluminio anodizado	18 g	8197128	EAHF-E24-60-P-S
Fijación para perfil EAHF	-E24P		:			
,aa.a pa.a periit Ertiii	Descripción	Idoneidad para la pro- ducción de baterías de	Material	Peso del	N.º art.	Código de producto

Aleación forjada de 71 g

8197132

EAHF-E24-60-P

		:		:	:				
Fijación para perfil EAHF-E24P-D									
	Descripción ¹⁾	Idoneidad para la pro- ducción de baterías de iones de litio	Material	Peso del producto	N.º art.	Código de producto			
	ELGD-60 en ELGD-100-L 1)	F1a	Aleación forjada de aluminio	133 g	8197130	EAHF-E24-60-P-D6			
	ELGD-80 en ELGD-100-L		anodizado	133 g	8197130	EAHF-E24-60-P-D6			

aluminio anodizado

F1a

Leva de conmutación EAP			1	1	1	
	Descripción	Idoneidad para la pro- ducción de baterías de iones de litio	Material	Peso del producto	N.º art.	Código de producto
	para tamaño 100	F1a	Acero	32 g	8197117	EAPM-E24-60-SLS

Leva de conmutación EAP	PM-E24SLE					
	Descripción	Idoneidad para la pro- ducción de baterías de iones de litio	Material	Peso del producto	N.º art.	Código de producto
				1		
100	para tamaño 100	F1a	Acero	20 g	8197116	EAPM-E24-60-SLE

¹⁾ En esta combinación, el eje se monta descentrado en el carro (véase la medida L13 para el dibujo de dimensiones con carro largo).

Accesorios

Descripción Idoneidad para la productio Material Peso del producto Código de producto para tamaño 100 F1a Acero 103 g 8197123 EAPM-E24-60-SHE	Soporte para sensor EAPM-E24SHE						
		Descripción	ducción de baterías de	Material		N.º art.	Código de producto
		para tamaño 100	F1a	Acero	103 g	8197123	EAPM-E24-60-SHE

Soporte para sensor EAPM-E24SHO							
	Descripción	Idoneidad para la pro- ducción de baterías de iones de litio	Material	Peso del producto	N.º art.	Código de producto	
	para tamaño 100	F1a	Acero	67 g	8197121	EAPM-E24-60-SHO	

опоста р	oximidad para ranura en T, inductivo	l	la 14 14 14	1	1	Hojas de datos → Internet: si
	Tipo de fijación	Salida de	Conexión eléctrica	Longitud del	N.º art.	Código de producto
		conmutación		cable		
				[m]		
ontacto nor	malmente abierto					
	Insertable desde arriba en la ranura,	PNP	Cable trifilar	7,5	551386	SIES-8M-PS-24V-K-7,5-OE
18	a ras con el perfil del cilindro		Conector M8x1, 3 pines	0,3	551387	SIES-8M-PS-24V-K-0,3-M8D
		NPN	Cable trifilar	7,5	551396	SIES-8M-NS-24V-K-7,5-OE
			Conector M8x1, 3 pines	0,3	551397	SIES-8M-NS-24V-K-0,3-M8D
ontacto nor	malmente cerrado					
	Insertable desde arriba en la ranura,	PNP	Cable trifilar	7,5	551391	SIES-8M-PO-24V-K-7,5-OE
	a ras con el perfil del cilindro		Conector M8x1, 3 pines	0,3	551392	SIES-8M-PO-24V-K-0,3-M8D
//		NPN	Cable trifilar	7,5	551401	SIES-8M-NO-24V-K-7,5-OE
			Conector M8x1, 3 pines	0,3	551402	SIES-8M-NO-24V-K-0,3-M8D

Sensor de pro	oximidad M8 (redondo), inductivo				Hojas de datos → Internet: sien
	Salida de conmutación	Conexión eléctrica	Longitud del cable [m]	N.º art.	Código de producto
Contacto nori	nalmente abierto				
	PNP	Cable trifilar	2,5	150386	SIEN-M8B-PS-K-L
	NPN		2,5	150384	SIEN-M8B-NS-K-L
	PNP	Conector M8x1, 3 pines	-	150387	SIEN-M8B-PS-S-L
	NPN		-	150385	SIEN-M8B-NS-S-L
Contacto nori	nalmente cerrado		·		
	PNP	Cable trifilar	2,5	150390	SIEN-M8B-PO-K-L
	NPN		2,5	150388	SIEN-M8B-NO-K-L
_~	PNP	Conector M8x1, 3 pines	-	150391	SIEN-M8B-PO-S-L
	NPN		-	150389	SIEN-M8B-NO-S-L

Accesorios

	Tapa de la ranura ABP-5-S1									
		Descripción	Material	Tamaño del envase	Peso del producto	N.º art.	Código de producto			
ĺ	///	para tamaño 100	ABS	2 por cada 0,5m	13 g	563360	ABP-5-S1			

Clip SMBK					
	Descripción	Tamaño del envase	Peso del producto	N.º art.	Código de producto
	para tamaño 100	10	1g	534254	SMBK-8