Edelstahlzylinder

Merkmale

Ihr Einsatzbereich

Auch in rauhen Einsatzbereichen haben zuverlässige Komponenten eine 100 %ige Funktionssicherheit zu realisieren. Ziel ist die hohe Verfügbarkeit bei Reduktion von Stillstandszeiten in Maschinenanlagen. Überall dort, wo pneumatische Antriebe aufgrund ihrer Oberflächengüte keine Chance gegen die umgebenden Medien haben, sind Edelstahlzylinder gefordert. Die korrosionssichere Auslegung von Anlagen erfordert nicht nur die Auswahl eines geeigneten Stahles, sondern auch ein abgestimmtes Konzept für Befestigungsbauteile und Zubehör.

Unsere Stärke

Die Edelstahlzylinder von Festo zeichnen sich durch beständige Werkstoffe, wie z.B. 1.4301 und 1.4401 aus. Diese in der Praxis häufig verwendeten hochlegierten, nichtrostenden austenitischen Chrom-Nickel- und Chrom-Nickel-Molybdän-Stähle dienen als Schutz vor chemischer oder elektrochemischer Beanspruchung sowie gegen Schäden, die durch Reinigungs- und Desinfektionsmitteln an der Werkstoffoberfläche entstehen können. Diese genannten Werkstoffgruppen zeigen eine besondere Beständigkeit gegen gleichmäßige Flächenkorrosion und bieten einen erhöhten Schutz gegen Lochkorrosion sowie Spaltkorrosion.

Ihr Vorteil

Die Verfügbarkeit der Edelstahlzylinder, durch das weltweite Festo Servicenetz. Wir bieten Ihnen ein umfangreiches Normzylinder-Programm nach DIN ISO 15552 und 6432 an. Weiter steht Ihnen ein für die Zylinder abgestimmtes Befestigungs- und Zubehör-Programm zur Seite. Die Edelstahlzylinder sind mit NSF-H1 konformen Fetten ausgestattet und mit Abstreifern entsprechend der BGVV-Richtlinien. Dies erlaubt den Einsatz im Lebensmittelbereich. Wir von Festo informieren Sie gerne über zukünftige Erweiterungen unseres Edelstahl-Programmes. Nutzen Sie die Chance und treten Sie mit uns in den Dialog.

Gut zu wissen

Nutzen Sie bei schwierigen Einsatzfällen unsere jahrelange Erfahrung im Edelstahlbereich. Wir haben Experten, die Ihnen als Unterstützung bei Fragen zum Thema Oberflächengüte und chemische Beständigkeit zur Seite stehen.

Der Reifungskeller einer Käserei bietet Edelstahlzylindern ein ungemütliches Umfeld mit Ammoniak, Milchsäure und einer 98%igen Luftfeuchtigkeit.

Merkmale

Beständigkeit

Eine absolute Beständigkeit gegen Loch- und Spaltkorrosion ist auch bei idealen Anwendungsparametern nicht immer gegeben. Die Lochkorrosionserzeugende Wirkung von Chloridionen nimmt mit folgenden Parametern zu:

- Konzentration an Chloridionen
- Kontaktzeit
- Temperatur
- Abnehmender ph-Wert

Daher muß bei Konstruktion, Montage und Betrieb sichergestellt sein, daß alle Bereiche der Anlage gut spülbar sind, um eine Aufkonzentration von Chloridionen zu vermeiden. Ausgewählte Dichtungsmaterialien sorgen für eine sehr hohe Beständigkeit gegen zahlreiche chemische Verbindungen. Weitere Informationen zur Medienbeständigkeit finden Sie im Internet unter www.festo.com.

Grundsätzlich empfehlen wir eine Reinigung bei eingefahrener Kolbenstange um ein Auswaschen der Lebensdauerschmierung zu vermeiden. In vielen Industriebereichen kommt es durch verschiedene Arten von Verschmutzungen der Maschinenanlagen zu erforderlichen Reinigungsprozessen. Der Reinigungsgrad geht von trockenem Abwischen der Anlage über Naßreinigung bis zur Schaumreinigung mit verschiedenen Einwirkzeiten und Konzentrationen.

Eine Pauschalempfehlung zur Verträglichkeit ist somit nicht möglich.

Naßreinigung

Schaumreinigung

Lieferübersicht

	Ausführung	Тур	Kolben-Ø	Hub Kolbenstange							
					durch- gehend	verlängert	Außengewi verlängert	Sonder- gewinde	Innen- gewinde		
peltwir-			[mm]	[mm]	S2	К8	K2	К5	КЗ		
vir-	Normzylinder n	ach ISO 6432									
	A	CRDSNU	12, 16	1 200				•	•		
6		Einseitige Kolbenstange	20	1 320		-	•	ab Ø 25	ab Ø 20		
			25	1 500							
		CRDSNU-MQ	12, 16	1 200				•			
		kurzer Abschlussdeckel ohne	20	1 320	_	-	•	ab Ø 25	abø2		
		Schwenkbefestigung	25	1 500							
	1	CRDSNU-MG	12, 16	1 200				•			
		Lagerdeckel ohne Befesti-	20	1 320	_	-	•	ab Ø 25	abø2		
		gungsgewinde	25	1 500							
		CRDSNU-B-MG Lagerdeckel ohne Befesti- gungsgewinde (lagerhaltige Produkte)	20, 25	10, 25, 40, 50, 80, 100, 125, 160, 200 10, 25, 40, 50,		_	_	_	_		
			20, 23	80, 100, 125, 160, 200							
	Rundzylinder										
		CRDSNU Einseitige Kolbenstange	32, 40, 50, 63	1 500	•	•			•		
		CRDSNU-MQ kurzer Abschlussdeckel ohne Schwenkbefestigung	32, 40, 50, 63	1 500	_	•	•	•	•		
		CRDSNU-MG Lagerdeckel ohne Befestigungsgewinde	32, 40, 50, 63	1 500	-			•	•		
		CRDSNU-B-MG Lagerdeckel ohne Befesti- gungsgewinde (lagerhaltige Produkte)	32, 40	10, 25, 40, 50, 80, 100, 125, 160, 200	-	-	_	-	_		
		CRHD-MQ Lagerdeckel mit Außengewinde	32, 40, 50, 63, 80, 100	10 500 Sonderlängen auf Anfrage	_	_	_	-	_		
		CRHD-MC Abschlussdeckel mit Gabel	32, 40, 50, 63, 80, 100	10 500 Sonderlängen auf Anfrage	_	-	-	-	-		
		CRHD-MS Abschlussdeckel mit Lasche	32, 40, 50, 63, 80, 100	10 500 Sonderlängen auf Anfrage	_	_	_	_	_		
	Normzylinder n	ach ISO 15552 (ISO 6431 und VD									
		CRDNG Einseitige Kolbenstange	32, 40, 50, 63, 80, 100, 125	10 2000	•	-	_	_	_		
	Normzylinder n	nit Schwenklager hinten nach ISC) 15552 (ISO 6	431 und VDMA 245	62)			1			
		CRDNGS Einseitige Kolbenstange	32, 40, 50, 63, 80, 100, 125	10 2000	-	_	-	_	_		

Lieferübersicht

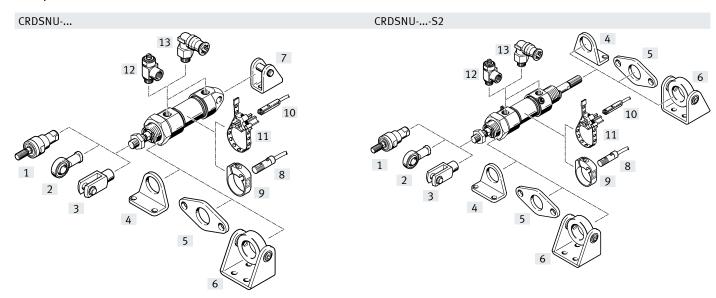
Positions-	Dämpfung	3		Abstreiferv	ariante		Warm-	Tieftem-	Zulassung	→ Seite/
erken- nung	fest	einstell- bar	selbstein- stellend	erhöhte chem. Be- ständig- keit	Hartab- streifer	Trocken- lauf	feste Dichtung	peratur	EU	Internet
A	Р	PPV	PPS	A1	A2	A3	S6	TT	EX4	
2										
		•						•		6
•	•	ab Ø 20	ab Ø 16	•	•	•	•	ab Ø 16	•	
		•	•					•		6
•	•	ab Ø 20	ab Ø 16	•	•	•	•	ab Ø 16	•	
		•								6
•	•	ab Ø 20	ab Ø 16	•	_	•	•	_	•	
	•									1
			_							
•				-	_	_	_	_	•	
	_		-							
1		1	1	l.	I.		1	1	1	l.
										18
•	•	•	-	•	-	•	-	•	•	
										18
•	-	•	•	•	-	-	-	-	•	
_	_		_	_					_	18
-	-	_	•	-	_	-	-	_	•	
										-
_										
•	_	_	•	•	_	_	_	_	•	
			1							30
•	_	•	_	_	_	_	•	_	-	
•	_	•	_	_	_	_	•	_	_	30
	1		1			+	1			
_		_	1				_			30
•	_	•	-	_	_	_	_	_	_	
52 (ISO 643	1 und VDM	Δ 24562)	1							
JZ (130 043	JI GIIG V DIVI	24302)	1							38
_		_	1				_			
_	_			_	_	_	_	_	_	
ager hinter	nach ISO 1	5552 (ISO 6/	 431 und VDM	 Δ 24562)	<u> </u>				1	
							Τ			38
_		_	1				_			
_	_	_	_	_	_	_	_	_	_	
	erkennung A 2	erkennung A P 2	fest einstell-bar A P PPV 2 ab Ø 20 ab Ø 20	Fest	Fest	erkennung fest einstellbar selbsteinstellend erhöhte chem. Beständigkeit Hartabstreifer streifer A P PPV PPS A1 A2 I	erkennung fest har einstell-bar selbstein-stellend stellend stel	erkennung fest einstellend stellend stellend stellend ständigkeit A1 A2 A3 S6 2 1	erken-nung	

Merkmale

Varianten CRDSNU Grundtyp

CRDSNU-S2: durchgehende Kolbenstange

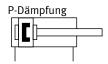
CRDSNU-MQ: kurzer Abschlussdeckel ohne Schwenkbefestigung CRDSNU-MG/CRDSNU-B-MG: Lagerdeckel ohne Befestigungsgewinde



Weitere Varianten		
Symbol	Merkmale	Beschreibung
	S2 Durchgehende Kolbenstange	Für beidseitiges Arbeiten, gleiche Kräfte im Vor- und Rückhub, zum Anbringen externer Anschläge
	S6 Warmfeste Dichtungen	Temperaturbeständigkeit bis max. 120 ℃
-	K2 Verlängertes Kolbenstangen-Außenge- winde	-
-	K3 Innengewinde an der Kolbenstange	-
-	K5 Sondergewinde an der Kolbenstange	Metrisches Regelgewinde nach ISO
-	K8 Verlängerte Kolbenstange	-
\longleftrightarrow	A1 Abstreifervariante	erhöhte chemische Beständigkeit: Abstreifer ist aus Fluorkautschuk
	A2 Abstreifervariante	Hartabstreifer: Zylinder mit Hartabstreifer für Staub, Partikel und zähe Medien
	A3 Abstreifervariante	Trockenlauf: Reinigungsprozesse entfetten die Kolbenstange. Eine spezielle Kolbenstangen- dichtung ermöglicht gegenüber der Standarddichtung eine höhere Lebensdau- er.
	TT Tieftemperatur	Temperaturbeständigkeit bis max. –40 °C
	EX4 Zulassung EU	Verwendung in explosionsgefährdeten Bereichen möglich

Dämpfungsarten	Dämpfung P	Dämpfung PPS	Dämpfung PPV
Funktionsweise	Der Antrieb ist mit einer kunst- stoffelastischen Endlagen- dämpfung ausgerüstet	Der Antrieb ist mit einer selbst- einstellenden Endlagendämp- fung ausgerüstet	 Der Antrieb ist mit einer ein- stellbaren Endlagendämpfung ausgerüstet
Anwendung	Kleine MassenNiedrige GeschwindigkeitenKleine Aufprallenergien	 Kleine bis mittlere Massen Kleine bis mittlere Geschwindigkeiten Mittleren Aufprallenergien 	Mittlere bis große MassenHohe GeschwindigkeitenGroßen Aufprallenergien
Vorteile	Keine Einstellung notwendigZeitsparend	Keine Einstellung notwendigZeitsparendLeistungsfähig	Sehr leistungsfähig

Peripherieübersicht


Befe	stigungselemente und Zubehör							
		Beschreibung	CRDSNU-				CRDSNU-B	→ Seite/
			Grundtyp	MQ	MG	S2	MG	Internet
[1]	Flexo-Kupplung CRFK	für den Ausgleich von Radial- und Winkelabwei- chungen	•	•	-	•	•	53
[2]	Gelenkkopf CRSGS	mit sphärischer Lagerung	•	-	-	-	•	53
[3]	Gabelkopf CRSG	lässt eine Schwenkbewegung des Zylinders in einer Ebene zu	•	-	-	-	•	53
[4]	Fußbefestigung CRHBN	für Lagerdeckel bei CRDSNU-S2 für Lager- und Abschlussdeckel	•	•	_	•	_	46
[5]	Flanschbefestigung CRFBN	für Lagerdeckel bei CRDSNU-S2 für Lager- und Abschlussdeckel	•	•	_	•	_	48
[6]	Schwenkbefestigung CRSBN	für Lagerdeckel bei CRDSNU-S2 für Lager- und Abschlussdeckel	•	•	_	•	_	46
[7]	Lagerbock CRLBN	für Abschlussdeckel	•	_	•	_	•	51
[8]	Näherungsschalter CRSMEO-4	runde Bauformzur Positionsabfrage	•	•	•	•	•	53
[9]	Befestigungsbausatz CRSMBR	für Näherungsschalter CRSMEO-4	•	•	•	•	•	54
[10]	Näherungsschalter CRSMT-8M	Bauform für T-Nut zur Positionsabfrage	•	•	•	•	•	53
[11]	Befestigungsbausatz SMBR	für Näherungsschalter CRSMT-8	•	•	•	•	•	54
[12]	Drossel-Rückschlagventil CRGRLA	zur Geschwindigkeitsregulierung	•	•	-	•	•	54
[13]	Steckverschraubung CRQS	zum Anschluss von außentolerierten Druckluft- schläuchen	•	•	•	•	•	qs

Normzylinder CRDSNU, ISO 6432, Edelstahl

Typenschlüssel

001	Baureihe
CRDSNU	Rundzylinder, doppeltwirkend, Edelstahl
002	Kolbendurchmesser
12	12
16	16
20	20
25	25
003	Hub
	1 500
1	In., a
004	Dämpfung
004 P	Dämptung Elastische Dämpfungsringe/-platten beidseitig
Р	Elastische Dämpfungsringe/-platten beidseitig
P PPV	Elastische Dämpfungsringe/-platten beidseitig Pneumatische Dämpfung, beidseitig einstellbar
P PPV PPS	Elastische Dämpfungsringe/-platten beidseitig Pneumatische Dämpfung, beidseitig einstellbar Pneumatische Dämpfung, beidseitig selbsteinstellend
P PPV PPS	Elastische Dämpfungsringe/-platten beidseitig Pneumatische Dämpfung, beidseitig einstellbar Pneumatische Dämpfung, beidseitig selbsteinstellend Positionserkennung
PPV PPS	Elastische Dämpfungsringe/-platten beidseitig Pneumatische Dämpfung, beidseitig einstellbar Pneumatische Dämpfung, beidseitig selbsteinstellend Positionserkennung Für Näherungsschalter
PPV PPS	Elastische Dämpfungsringe/-platten beidseitig Pneumatische Dämpfung, beidseitig einstellbar Pneumatische Dämpfung, beidseitig selbsteinstellend Positionserkennung Für Näherungsschalter Zylinderdeckel

007	Abstreifervariante					
	Keine					
A1	Erhöhte chemische Beständigkeit					
A2	Hartabstreifer					
A3	Für Trockenlauf					
008	Kolbenstangenart					
	Einseitig					
S 2	Durchgehende Kolbenstange					
009	Kolbenstangengewindeart					
	Außengewinde					
К3	Innengewinde					
010	Sondergewinde					
"M10"K5	M10					
011	Kolbenstangenverlängerung					
011	Kolbenstangenverlängerung Ohne					
011 K8						
	Ohne					
К8	Ohne 1 500 mm					
К8	Ohne 1 500 mm Temperaturbereich					
K8	Ohne 1 500 mm Temperaturbereich Standard					
K8	Ohne 1 500 mm Temperaturbereich Standard Warmfeste Dichtungen max. 120 °C					
K8 012 S6 TT	Ohne 1 500 mm Temperaturbereich Standard Warmfeste Dichtungen max. 120 °C -40 +80 °C					

- **Ø** - Durchmesser 12 ... 25 mm

- Hublänge 1 ... 500 mm

Allgemeine Technis	che Date	en						
Kolben-ø			12	16	20	25		
Pneumatischer Anschluss			M5	M5	G1/8	G1/8		
Kolbenstangengewinde			M6	M6	M8	M10x1,25		
Konstruktiver Aufbau			Kolben	Kolben				
			Kolbenstange					
			Zylinderrohr					
Dämpfung	Р		elastische Dämpfungsringe/-platten beidseitig					
	PPV		-		Dämpfung beidse	itig einstellbar		
	PPS		-	Dämpfung beids	eitig selbsteinstellend			
Dämpfungslänge	PPV	[mm]	-		15	17		
	PPS	[mm]	-	12	15	17		
Positionserkennung			für Näherungsschalter					
Befestigungsart			mit Zubehör					
			mit Außengewinde					
Einbaulage			beliebig					

Betriebsbedingungen						
Betriebsmedium		Druckluft nach ISO 8573-1:2010 [7:4:4]				
Hinweis zum Betriebs-/		geölter Betrieb möglich (im weiteren Betrieb erforderlich)				
Steuermedium						
Betriebsdruck ¹⁾	[bar]	110				
Lebensmitteltauglichkeit ²⁾		→ erweiterte Werkstoffinformationen				

¹⁾ Bei Varianten ist eine Erhöhung des min. Betriebsdruck möglich

Weitere Informationen www.festo.com/sp → Zertifikate.

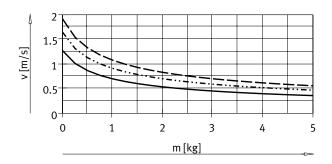
Umweltbedingungen								
Normzylinder	Grundtyp/A3	A1	S6	TT	EX4			
Umgebungstemperatur ¹⁾ [°C]	-20 +80	0 +80	0 +120	-40 +80	-20 +60			
Korrosionsbeständigkeit KBK ²⁾	3							

¹⁾ Einsatzbereich der Näherungsschalter beachten

Starke Korrosionsbeanspruchung. Freibewitterung unter gemäßigten korrosiven Bedingungen. Außenliegende sichtbare Teile im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre mit vorrangig funktioneller Anforderung an die Oberfläche.

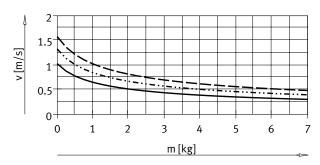
ATEX ¹⁾	
ATEX-Kategorie Gas	II 2G
Ex-Zündschutzart Gas	Ex h IIC T4 Gb
ATEX-Kategorie Staub	II 2D
Ex-Zündschutzart Staub	Ex h IIIC T120°C Db
Ex-Umgebungstemperatur	-20°C <= Ta <= +60°C
CE-Zeichen (siehe Konformitätserklä-	nach EU-Ex-Schutz-Richtlinie (ATEX)
rung)	

¹⁾ ATEX-Zulassung des Zubehörs beachten.

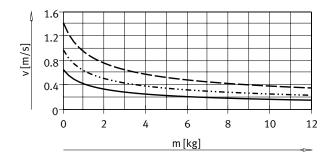

²⁾ Korrosionsbeständigkeitsklasse KBK 3 nach Festo Norm FN 940070

Kräfte [N] und Aufprallenergie [J]							
Kolben-ø	12	16	20	25			
Theoretische Kraft bei 6 bar, Vorlauf	68	121	188	295			
Theoretische Kraft bei 6 bar, Rücklauf	51	104	158	247			
Aufprallenergie in den Endlagen für P- Dämpfung ¹⁾	0,07	0,15	0,20	0,30			

¹⁾ Bei einer Umgebungstemperatur von 80 °C verringern sich die Werte um ca. 50%


Mittlere Kolbengeschwindigkeit v in Abhängigkeit von der Zusatzmasse m in Verbindung mit Dämpfung PPS

Kolben-ø 16


DSNU-16-50
DSNU-16-100
DSNU-16-200

Kolben-ø 20

DSNU-20-50
DSNU-20-100
DSNU-20-200

Kolben-ø 25

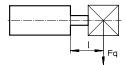
DSNU-25-50
DSNU-25-100
DSNU-25-200

Hinweis

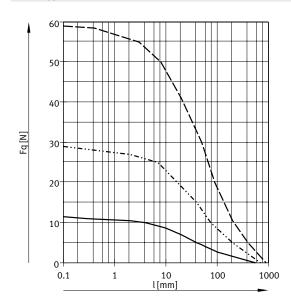
Auslegungssoftware für P-Dämpfung PPV-Dämpfung

→ https://www.festo.com/eap/ en_gb/PneumaticSizing/

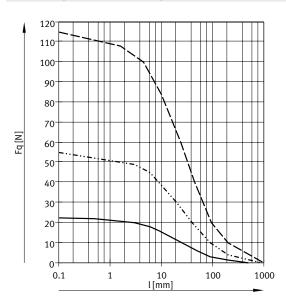
Weitere Diagramme zur PPS-Dämpfung


→ www.festo.com

Gewichte [g]				
Kolben-Ø	12	16	20	25
Grundgewicht bei 0 mm Hub	101	130	310	410
Gewichtszuschlag pro 10 mm Hub	4	5	7	11
Bewegte Masse bei 0 mm Hub	19	21	42	73
Massenzuschlag pro 10 mm Hub	2	2	4	6

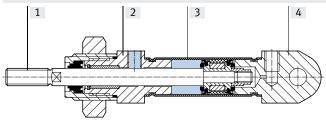

Mittlere Kolbengeschwindigkeit

= Hub/Bewegungszeit


Max. Querkraft Fq in Abhängigkeit von der Auskragung l

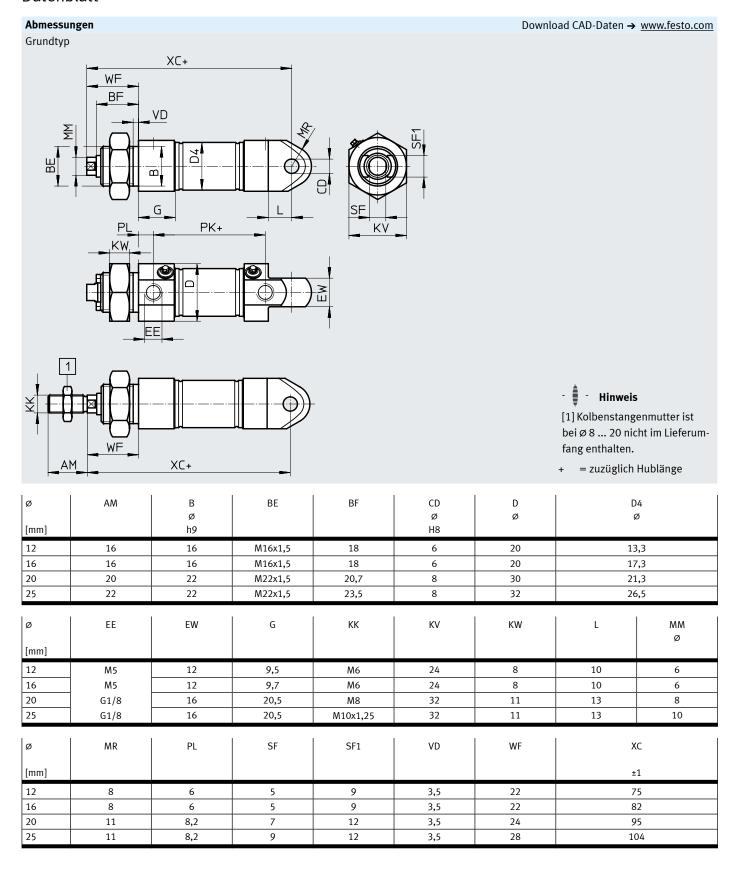
Grundtyp

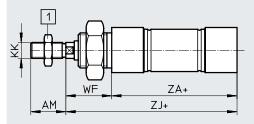
S2 – Durchgehende Kolbenstange



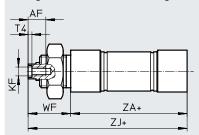
DSNU-12/16
DSNU-20

——— DSNU-25


Werkstoffe

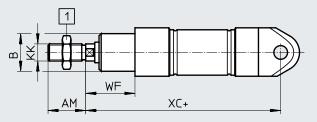

Norr	mzylinder	Grundtyp	S6/A1	A3	ТТ		
[1]	Kolbenstange	hochlegierter Stahl, rostfrei	hochlegierter Stahl, rostfrei				
[2]	Lagerdeckel	hochlegierter Stahl, rostfrei					
[3]	Zylinderrohr	hochlegierter Stahl, rostfrei					
[4]	Abschlussdeckel	hochlegierter Stahl, rostfrei					
_	Dichtungen	TPE-U (PUR) Mediendichtung (modifiziert für Hydrolyse- und Reinigungsbeständigkeit)	FPM	UHMW-PE	TPE-U (PUR) (tieftemperaturgeeignet)		
	Werkstoff-Hinweis	RoHS konform					
- L			LABS-haltige Stoffe enthalten				
Mari	Maritime Klassifizierung ¹⁾ siehe Zertifikat						

1) Weitere Informationen www.festo.com/sp \rightarrow Zertifikate

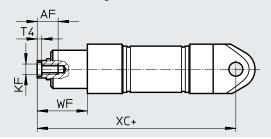


Abmessungen

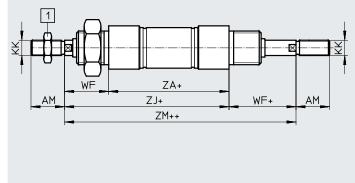
MQ – kurzer Abschlussdeckel ohne Schwenkbefestigung

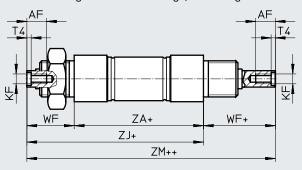


MQ-K3 – kurzer Abschlussdeckel ohne Schwenkbefestigung, mit Innengewinde an der Kolbenstange



Download CAD-Daten → www.festo.com


MG – Lagerdeckel ohne Befestigungsgewinde

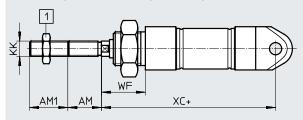

MG-K3 – Lagerdeckel ohne Befestigungsgewinde, mit Innengewinde an der Kolbenstange

S2 – Durchgehende Kolbenstange

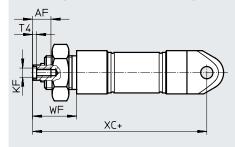
S2-K3 – Durchgehende Kolbenstange, mit Innengewinde

- Finweis

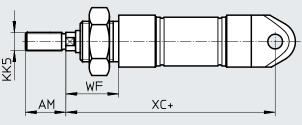
[1] Kolbenstangenmutter ist bei Ø 8 ... 20 nicht im Lieferumfang enthalten.

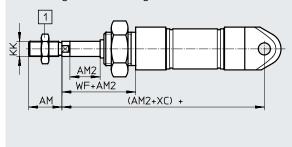

- + = zuzüglich Hublänge
- ++ = zuzüglich 2x Hublänge

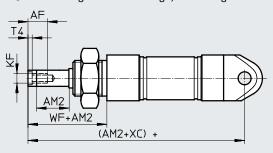
Ø	AF	AM	В	KF	K	K
			Ø			
[mm]			h9			
12	-	16	16	-	N	16
16	-	16	16	-	N	16
20	12	20	22	M4	N	18
25	12	22	22	M6	M10x1,25	
	!					
Ø	T4	WF	XC	ZA	ZJ	ZM
[mm]			±1			
12	-	22	75	50	72	95
16	-	22	82	56	78	101
20	2	24	95	68	92	117
25	2,6	28	104	69,5	97,5	126

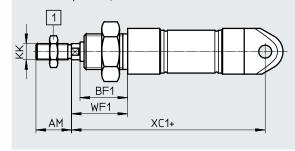

Abmessungen

Download CAD-Daten → www.festo.com


K2 – Verlängertes Kolbenstangen-Außengewinde


K3 – Innengewinde an der Kolbenstange


K5 – Sondergewinde an der Kolbenstange


K8 – Verlängerte Kolbenstange

K3-K8 – Verlängerte Kolbenstange, mit Innengewinde

TT – Tieftemperatur / A2 – Hartabstreifer

[1] Kolbenstangenmutter ist bei Ø 8 ... 20 nicht im Lieferumfang enthalten.

= zuzüglich Hublänge

Ø	AF	AM		AM1	AM2
[mm]				max.	max.
12	-	16		1 20	1 100
16	-	16		1 20	1 100
20	12	20		1 25	1 100
25	12	22		1 35	1 100
ø	BF1	KF		КК	KK5
[mm]					
12	24	-		M6	-
16	24	_		M6	-
20	26,7	M4		M8	-
25	29,5	M6		M10x1,25	M10
ø	T4	WF	WF1	XC	XC1
[mm]				±1	±1
12	-	22	28	75	81
16	-	22	28	82	88
20	2	24	30	95	101
25	2,6	28	34	104	110

Bestellangaben

Bestellan	ngaben – lagerhaltig	e Produkte						
Тур	Kolben-ø	Hub	P- elas	tische Dämpfungsringe/-platten				
			PPS – pne	umatische Dämpfung beidseitig selbsteinstellend				
			A – mit	Positionserkennung				
				MG – Lagerdeckel ohne Befestigungsgewinde				
			_	treifervariante: erhöhte chemische Beständigkeit				
	[mm]	[mm]	Teile-Nr.	Тур				
	16	10	8073759	CRDSNU-B-16-10-P-A-MG-A1				
	┰╽	25	8073760	CRDSNU-B-16-25-P-A-MG-A1				
		40	8073761	CRDSNU-B-16-40-P-A-MG-A1				
		50	8073762	CRDSNU-B-16-50-P-A-MG-A1				
		80	8073763	CRDSNU-B-16-80-P-A-MG-A1				
		100	8073764	CRDSNU-B-16-100-P-A-MG-A1				
		125	8073765	CRDSNU-B-16-125-P-A-MG-A1				
		160	8073766	CRDSNU-B-16-160-P-A-MG-A1				
		200	8073767	CRDSNU-B-16-200-P-A-MG-A1				
	20	10	8073980	CRDSNU-B-20-10-PPS-A-MG-A1				
		25	8073979	CRDSNU-B-20-25-PPS-A-MG-A1				
		40	8073978	CRDSNU-B-20-40-PPS-A-MG-A1				
		50	8073977	CRDSNU-B-20-50-PPS-A-MG-A1				
		80	8073976	CRDSNU-B-20-80-PPS-A-MG-A1				
		100	8073975	CRDSNU-B-20-100-PPS-A-MG-A1				
		125	8073974	CRDSNU-B-20-125-PPS-A-MG-A1				
		160	8073973	CRDSNU-B-20-160-PPS-A-MG-A1				
		200	8073972	CRDSNU-B-20-200-PPS-A-MG-A1				
	25	10	2159636	CRDSNU-B-25-10-PPS-A-MG-A1				
		25	2159637	CRDSNU-B-25-25-PPS-A-MG-A1				
		40	2159638	CRDSNU-B-25-40-PPS-A-MG-A1				
		50	2159639	CRDSNU-B-25-50-PPS-A-MG-A1				
		80	2159640	CRDSNU-B-25-80-PPS-A-MG-A1				
		100	2159641	CRDSNU-B-25-100-PPS-A-MG-A1				
		125	2159642	CRDSNU-B-25-125-PPS-A-MG-A1				
		160	2159643	CRDSNU-B-25-160-PPS-A-MG-A1				
		200	2159644	CRDSNU-B-25-200-PPS-A-MG-A1				

- Hinweis

Bei lagerhaltigen Produkten ist der Lagerdeckel einteilig. Bei Bestellung über den Produktbaukasten ist der Lagerdeckel zweiteilig, was den Austausch des Abstreifers im Reparaturfall ermöglicht.

Bestellangaben

Baugröße		12	16	20	25	Bedin- gungen	Code	Eintrag Code
Baukasten-Nr.		552787	552788	552789	552790			
Ausführung		Edelstahl					CR	CR
Funktion		Normzylinder, o	doppeltwirkend, b	asierend nach ISC	6432		DSNU	DSNU
Kolben-Ø	[mm]	12	16	20	25			
Hub	[mm]	1 200		1 320	1 500			
Dämpfung		elastische Däm	pfungsringe/-pla	tten beidseitig			-P	
		-	pneumatische	Dämpfung, selbs	teinstellend	[1]	-PPS	
		-	-	pneumatisch tig einstellba	e Dämpfung, beidsei- r		-PPV	
Positionserkennung		für Näherungss	schalter				-A	
Zylinderdeckel		kurzer Abschlussdeckel ohne Schwenkbefestigung					-MQ	
	Ī	Lagerdeckel ohne Befestigungsgewinde					-MG	
Abstreifervariante		erhöhte chemische Beständigkeit				[1]	-A1	
	Ī	Hartabstreifer				[2]	-A2	
	Ī	Trockenlauf				[1]	-A3	
Kolbenstangenart		durchgehende	Kolbenstange			[3]	-S2	
Außengewinde verlängert		verlängertes Kolbenstangen-Außengewinde						
	[mm]	1 20		1 25	1 35		K2	
Innengewinde		Kolbenstange mit Innengewinde						
	Ī	-	-	(M4)	(M6)	[4]	-К3	
Sondergewinde		Sondergewinde	e an der Kolbenst	ange				
		_	_	-	M10		-""K5	
Kolbenstange verlängert	[mm]	1 100					K8	
Temperaturbeständigkeit		warmfeste Dichtungen max. 120 °C				-S6		
Tieftemperatur		_	– Dichtungen und Schmierfett von −40 °C +80 °C				-TT	
Zulassung EU		II 2GD				[6]	-EX4	

[1] PPS, A1, A3 Nicht mit S6, TT

[2] A2 Nicht mit MG, S2, K3, S6, TT
[3] S2 Nicht mit MQ, MG

[4] K3 Nicht mit K2, K5

[5] TT Nicht mit MG, S2, K3, S6 [6] EX4 Nicht mit S6, TT

Merkmale

Varianten CRDSNU Grundtyp

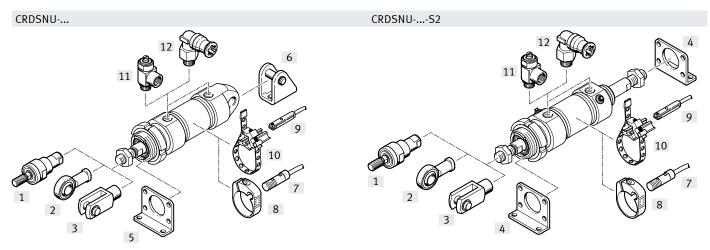
CRDSNU-S2: durchgehende Kolbenstange

ge

CRDSNU-MQ: kurzer Abschlussdeckel ohne Schwenkbefestigung

CRDSNU-MG:

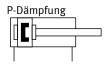
Lagerdeckel ohne Befestigungsgewinde



	•	
Weitere Varianten		
Symbol	Merkmale	Beschreibung
	S2 Durchgehende Kolbenstange	Für beidseitiges Arbeiten, gleiche Kräfte im Vor- und Rückhub, zum Anbringen externer Anschläge
	S6 Warmfeste Dichtungen	Temperaturbeständigkeit bis max. 120 °C
-	K2 Verlängertes Kolbenstangen-Außengewinde	-
-	K3 Innengewinde an der Kolbenstange	-
-	K5 Sondergewinde an der Kolbenstange	Metrisches Regelgewinde nach ISO
-	K8 Verlängerte Kolbenstange	-
\longleftrightarrow	A1 Abstreifervariante	erhöhte chemische Beständigkeit
	A2 Abstreifervariante	Hartabstreifer: Zylinder mit Hartabstreifer
	A3 Abstreifervariante	Trockenlauf: Reinigungsprozesse entfetten die Kolbenstange. Eine spezielle Kolbenstangen- dichtung ermöglicht gegenüber der Standarddichtung eine höhere Lebensdau- er.
	TT Tieftemperatur	Temperaturbeständigkeit bis max. –40 °C
	EX4 Zulassung EU	Verwendung in explosionsgefährdeten Bereichen möglich

Dämpfungsarten			
	Dämpfung P	Dämpfung PPS	Dämpfung PPV
Funktionsweise	 Der Antrieb ist mit einer kunst- stoffelastischen Endlagen- dämpfung ausgerüstet 	 Der Antrieb ist mit einer selbst- einstellenden Endlagendämp- fung ausgerüstet 	Der Antrieb ist mit einer ein- stellbaren Endlagendämpfung ausgerüstet
Anwendung	Kleine MassenNiedrige GeschwindigkeitenKleine Aufprallenergien	 Kleine bis mittlere Massen Kleine bis mittlere Geschwindigkeiten Mittleren Aufprallenergien 	Mittlere bis große MassenHohe GeschwindigkeitenGroßen Aufprallenergien
Vorteile	Keine Einstellung notwendigZeitsparend	Keine Einstellung notwendigZeitsparendLeistungsfähig	Sehr leistungsfähig

Peripherieübersicht


Befe	stigungselemente und Zubehör						
		Beschreibung	CRDSNU- Grundtyp	MQ	MG	S2	→ Seite/In- ternet
[1]	Flexo-Kupplung CRFK	für den Ausgleich von Radial- und Winkelabweichungen	•	•	•	-	53
[2]	Gelenkkopf CRSGS	mit sphärischer Lagerung	•	-	•	-	53
[3]	Gabelkopf CRSG	lässt eine Schwenkbewegung des Zylinders in einer Ebene zu	•	•	•	•	53
[4]	Fußbefestigung CRH	 2 Stück im Lieferumfang bei CRDSNU-S2 für Lager- und Abschlussdeckel	-	-	-	-	47
[5]	Flanschbefestigung CRFV	1 Stück im Lieferumfang für Lagerdeckel	•	•	-	_	48
[6]	Lagerbock CRLBN	für Abschlussdeckel	•	-	•	_	51
[7]	Näherungsschalter CRSMEO-4	runde Bauform zur Positionsabfrage	•	•	•	•	53
[8]	Befestigungsbausatz CRSMBR	für Näherungsschalter CRSMEO-4	•	•	•	•	54
[9]	Näherungsschalter CRSMT-8M	Bauform für T-Nut zur Positionsabfrage	•	•	•	•	53
[10]	Befestigungsbausatz SMBR	für Näherungsschalter CRSMT-8	•	•	•	•	54
[11]	Drossel-Rückschlagventil CRGRLA	zur Geschwindigkeitsregulierung	•	-	•	-	54
[12]	Steckverschraubung CRQS	zum Anschluss von außentolerierten Druckluftschläuchen	•				qs

Rundzylinder CRDSNU, Edelstahl

Typenschlüssel

001	Baureihe
CRDSNU	Rundzylinder, doppeltwirkend, Edelstahl
002	Kolbendurchmesser
32	32
40	40
50	50
63	63
003	Hub
	1 500
004	Dämpfung
Р	Elastische Dämpfungsringe/-platten beidseitig
PPV	Pneumatische Dämpfung, beidseitig einstellbar
PPS	Pneumatische Dämpfung, beidseitig selbsteinstellend
005	Positionserkennung
Α	Für Näherungsschalter
006	Zylinderdeckel
	Standard
MQ	Kurzer Abschlussdeckel ohne Schwenkbefestigung
MG	Lagerdeckel ohne Befestigungsgewinde
007	Abstreifervariante
	Keine
A1	Erhöhte chemische Beständigkeit
A2	Hartabstreifer
A3	Für Trockenlauf

008	Kolbenstangenart	
008		
	Einseitig	
S2	Durchgehende Kolbenstange	
009	Kolbenstangengewinde-Verlängerung	
	Ohne	
K2	1 70 mm	
010	Kolbenstangengewindeart	
	Außengewinde	
К3	Innengewinde	
011	Sondergewinde	
"M10"K5	M10	
"M12"K5	M12	
"M16"K5	M16	
012	Kolbenstangenverlängerung	
	Ohne	
K8	1 500 mm	
013	Temperaturbereich	
	Standard	
S 6	Warmfeste Dichtungen max. 120 °C	
TT	-40 +80 °C	
014	Zulassung EU	
	Keine	
EX4	II 2GD	İ

- **D** - Durchmesser 32 ... 63 mm

- Hublänge 1 ... 500 mm

Allgemeine Technis	che Date	en						
Kolben-ø			32	40	50	63		
Pneumatischer Ans	chluss		G1/8	G1/4	G1/4	G3/8		
Kolbenstangengew	inde		M10x1,25	M12x1,25	M16x1,5	M16x1,5		
Konstruktiver Aufba	au		Kolben					
			Kolbenstange	Kolbenstange				
			Zylinderrohr					
Dämpfung	Р		elastische Dämpfungsringe/-platten beidseitig					
	PPV		Dämpfung beidseitig	Dämpfung beidseitig einstellbar				
	PPS		Dämpfung beidseitig selbsteinstellend					
Dämpfungslänge	PPV	[mm]	14	18	20	21		
	PPS	[mm]	14	18	20	21		
Positionserkennung	3		für Näherungsschalter					
Befestigungsart		mit Zubehör						
			mit Außengewinde					
Einbaulage			beliebig					

Betriebsbedingungen	Betriebsbedingungen					
Betriebsmedium		Druckluft nach ISO 8573-1:2010 [7:4:4]				
Hinweis zum Betriebs-/		geölter Betrieb möglich (im weiteren Betrieb erforderlich)				
Steuermedium						
Betriebsdruck ¹⁾	[bar]	1 10				
Lebensmitteltauglichkeit ²⁾		→ erweiterte Werkstoffinformationen				

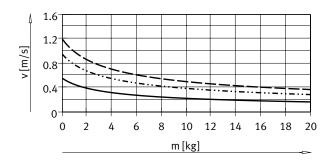
- 1) Bei Varianten ist eine Erhöhung des min. Betriebsdruck möglich
- 2) Weitere Informationen www.festo.com/sp \rightarrow Zertifikate.

Umweltbedingungen							
Normzylinder	Grundtyp/A3	A1	S6	ТТ	EX4		
Umgebungstemperatur ¹⁾ [°C]	-20 +80	0 +80	0 +120	-40 +80	-20 +60		
Korrosionsbeständigkeit KBK ²⁾	3						

- 1) Einsatzbereich der Näherungsschalter beachten
- 2) Korrosionsbeständigkeitsklasse KBK 3 nach Festo Norm FN 940070

Starke Korrosionsbeanspruchung. Freibewitterung unter gemäßigten korrosiven Bedingungen. Außenliegende sichtbare Teile im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre mit vorrangig funktioneller Anforderung an die Oberfläche.

ATEX ¹⁾	
ATEX-Kategorie Gas	II 2G
Ex-Zündschutzart Gas	Ex h IIC T4 Gb
ATEX-Kategorie Staub	II 2D
Ex-Zündschutzart Staub	Ex h IIIC T120°C Db
Ex-Umgebungstemperatur	-20°C <= Ta <= +60°C
CE-Zeichen (siehe Konformitätserklärung)	nach EU-Ex-Schutz-Richtlinie (ATEX)


1) ATEX-Zulassung des Zubehörs beachten.

Kräfte [N] und Aufprallenergie [J]	Kräfte [N] und Aufprallenergie [J]						
Kolben-ø	32	40	50	63			
Theoretische Kraft bei 6 bar, Vorlauf	483	754	1178	1870			
Theoretische Kraft bei 6 bar, Rücklauf	415	633	990	1682			
Aufprallenergie in den Endlagen für P- Dämpfung ¹⁾	0,4	0,7	1,0	1,3			

¹⁾ Bei einer Umgebungstemperatur von 80 °C verringern sich die Werte um ca. 50%

Mittlere Kolbengeschwindigkeit v in Abhängigkeit von der Zusatzmasse m in Verbindung mit Dämpfung PPS

Kolben-ø 32

1.2 1 ... 0.8 0.6 0.4 0.2 0

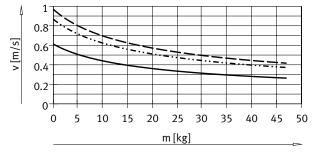
15

m[kg]

20

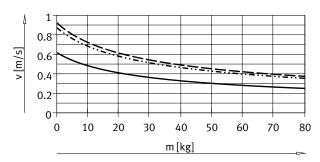
25

30


10

DSNU-32-50
DSNU-32-100
DSNU-32-200

DSNU-40-50
DSNU-40-100
DSNU-40-200


5

Kolben-ø 50

Kolben-ø 40

DSNU-50-50
DSNU-50-100
DSNU-50-200

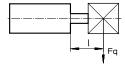
DSNU-63-50
----- DSNU-63-100
---- DSNU-63-200

Hinweis

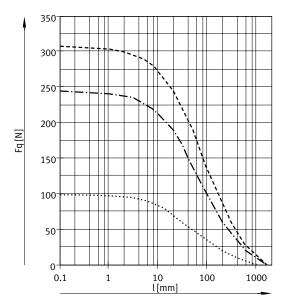
Auslegungssoftware für P-Dämpfung

PPV-Dämpfung

→ https://www.festo.com/eap/ en_gb/PneumaticSizing/

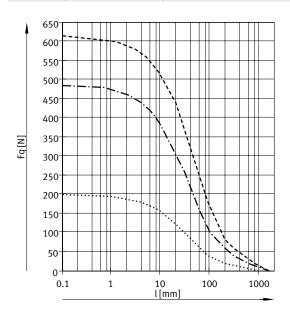

Weitere Diagramme zur PPS-Dämpfung

→ www.festo.com

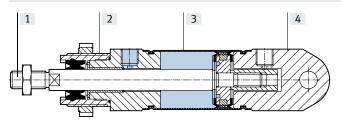

Mittlere Kolbengeschwindigkeit = Hub/Bewegungszeit

Gewichte [g]						
Kolben-ø	32	40	50	63		
Grundgewicht bei 0 mm Hub	670	1327	2020	2943		
Gewichtszuschlag pro 10 mm Hub	15	24	40	44		
Bewegte Masse bei 0 mm Hub	118	232	416	472		
Massenzuschlag pro 10 mm Hub	9	16	25	25		

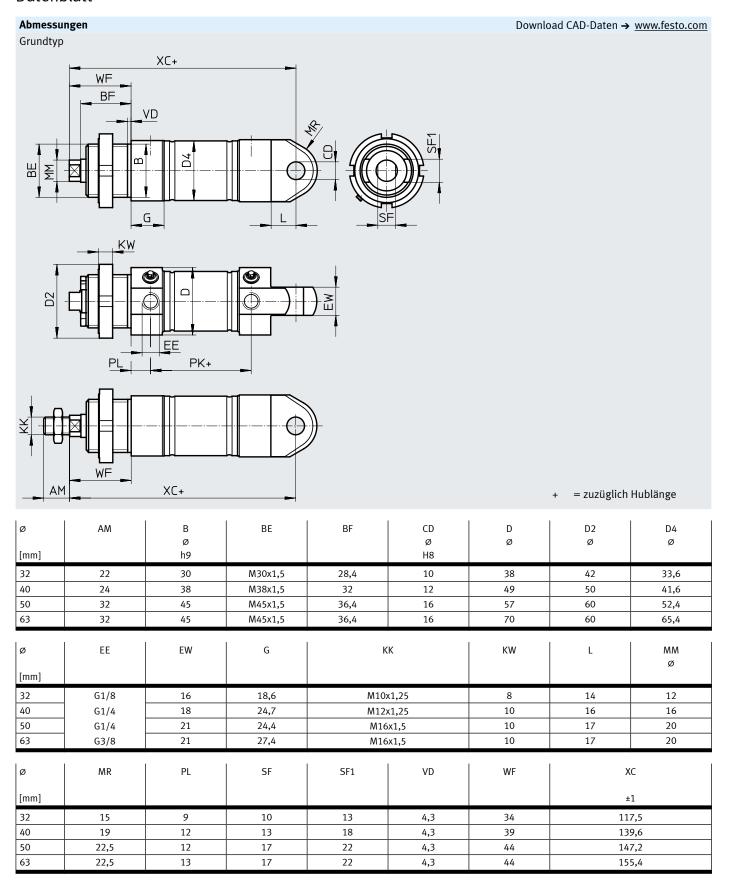
Max. Querkraft Fq in Abhängigkeit von der Auskragung l



Grundtyp

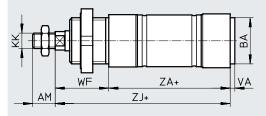

DSNU-32
DSNU-40
DSNU-50/63

S2 – Durchgehende Kolbenstange

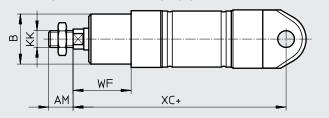


Werkstoffe

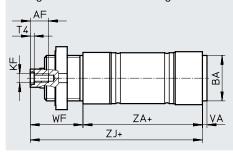
Funktionsschnitt



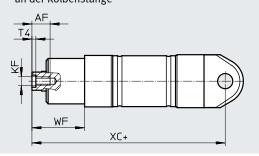
Nori	mzylinder	Grundtyp S6/A1		A3	тт			
[1]	Kolbenstange	hochlegierter Stahl, rostfrei						
[2]	Lagerdeckel	hochlegierter Stahl, rostfrei						
[3]	Zylinderrohr	hochlegierter Stahl, rostfrei						
[4]	Abschlussdeckel	hochlegierter Stahl, rostfrei	hochlegierter Stahl, rostfrei					
_	Dichtungen	TPE-U (PUR) Mediendichtung (modifiziert für Hydrolyse- und Reinigungsbeständigkeit)	FPM	UHMW-PE	TPE-U (PUR) (tieftemperatur- geeignet)			
	Werkstoff-Hinweis	RoHS konform						
		_		LABS-haltige Stoffe enthalten				

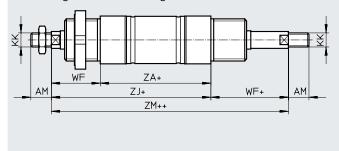

Abmessungen

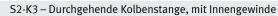
MQ – kurzer Abschlussdeckel ohne Schwenkbefestigung

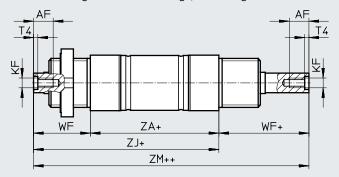


Download CAD-Daten → www.festo.com

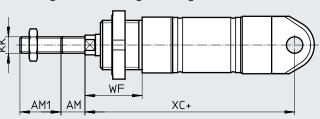

MG – Lagerdeckel ohne Befestigungsgewinde


MQ-K3 – kurzer Abschlussdeckel ohne Schwenkbefestigung, mit Innengewinde an der Kolbenstange

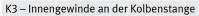


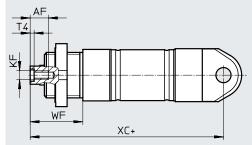

MG-K3 – Lagerdeckel ohne Befestigungsgewinde, mit Innengewinde an der Kolbenstange

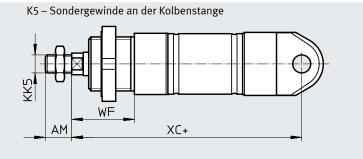
S2 – Durchgehende Kolbenstange

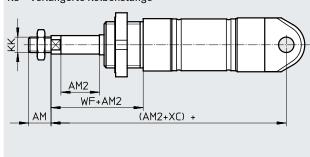

- + = zuzüglich Hublänge
- ++ = zuzüglich 2x Hublänge

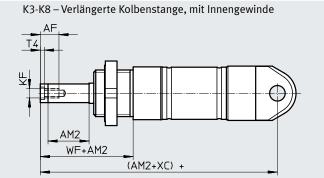
ø	AF	AM	В	BA	KF	KK
			Ø			
[mm]			h9	h9		
32	12	22	30	30	M6	M10x1,25
40	12	24	38	38	M8	M12x1,25
50	16	32	45	45	M10	M16x1,5
63	16	32	45	45	M10	M16x1,5

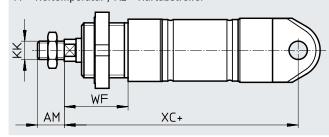

Ø	T4	VA	WF	XC	ZA	ZJ	ZM
[mm]				±1			
32	2,6	3	34	118	69,5	104	138
40	3,3	4	39	140	84,6	124	163
50	4,7	4	44	147	86,2	130	175
63	4,7	4	44	156	94,2	139	183


Abmessungen


K2 – Verlängertes Kolbenstangen-Außengewinde


Download CAD-Daten → www.festo.com





K8 – Verlängerte Kolbenstange

TT – Tieftemperatur / A2 – Hartabstreifer

= zuzüglich Hublänge

ø	AF	АМ	AM1	AM2	KF
[mm]			max.	max.	
32	12	22	1 35	1 500	M6
40	12	24	1 35	1 500	M8
50	16	32	170	1 500	M10
63	16	32	1 70	1 500	M10
ø	KK	KK5	T4	WF	XC
[mm]					±1
32	M10x1,25	M10	2,6	34	118
40	M12x1,25	M12	3,3	39	140
50	M16x1,5	M16	4,7	44	147
63	M16x1,5	M16	4,7	44	156

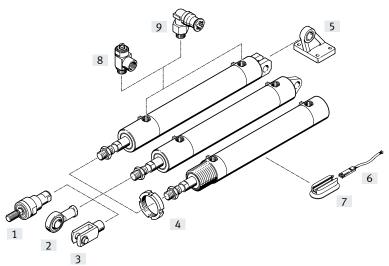
Rundzylinder CRDSNU, Edelstahl

Bestellangaben

Bestellar	ngaben – lagerhaltig	e Produkte					
Тур	Kolben-ø	Hub	PPS – pnei	PPS – pneumatische Dämpfung beidseitig selbsteinstellend			
			A – mit I	Positionserkennung			
			MG – Lage	erdeckel ohne Befestigungsgewinde			
			A1 – Abst	reifervariante: erhöhte chemische Beständigkeit			
	[mm]	[mm]	Teile-Nr.	Тур			
	32	10	2176399	CRDSNU-B-32-10-PPS-A-MG-A1			
		25	2176400	CRDSNU-B-32-25-PPS-A-MG-A1			
		40	2176401	CRDSNU-B-32-40-PPS-A-MG-A1			
		50	2176402	CRDSNU-B-32-50-PPS-A-MG-A1			
		80	2176403	CRDSNU-B-32-80-PPS-A-MG-A1			
		100	2176404	CRDSNU-B-32-100-PPS-A-MG-A1			
		125	2176405	CRDSNU-B-32-125-PPS-A-MG-A1			
		160	2176406	CRDSNU-B-32-160-PPS-A-MG-A1			
		200	2176407	CRDSNU-B-32-200-PPS-A-MG-A1			
	40	10	8073989	CRDSNU-B-40-10-PPS-A-MG-A1			
		25	8073988	CRDSNU-B-40-25-PPS-A-MG-A1			
		40	8073987	CRDSNU-B-40-40-PPS-A-MG-A1			
		50	8073986	CRDSNU-B-40-50-PPS-A-MG-A1			
		80	8073985	CRDSNU-B-40-80-PPS-A-MG-A1			
		100	8073984	CRDSNU-B-40-100-PPS-A-MG-A1			
		125	8073983	CRDSNU-B-40-125-PPS-A-MG-A1			
		160	8073982	CRDSNU-B-40-160-PPS-A-MG-A1			
		200	8073981	CRDSNU-B-40-200-PPS-A-MG-A1			

- 🛔 - Hinweis

Bei lagerhaltigen Produkten ist der Lagerdeckel einteilig. Bei Bestellung über den Produktbaukasten ist der Lagerdeckel zweiteilig, was den Austausch des Abstreifers im Reparaturfall ermöglicht.


Bestellangaben

Bestelltabelle – Produktbaukasten							
Baugröße	32	40	50	63	Bedin- gungen	Code	Eintrag Code
Baukasten-Nr.	552791	552792	552793	552794			
Ausführung	Edelstahl					CR	CR
Funktion	Rundzylinder	, doppeltwirkend				DSNU	DSNU
Kolben-Ø [mm]	32	40	50	63			
Hub [mm]	1 500	·					
Dämpfung	elastische Dä	impfungsringe/-pla	atten beidseitig			-P	
	pneumatisch	e Dämpfung, selbs	teinstellend		[1]	-PPS	
	pneumatisch	pneumatische Dämpfung, beidseitig einstellbar				-PPV	
Positionserkennung	für Näherung	sschalter				-A	
Zylinderdeckel	kurzer Abschlussdeckel ohne Schwenkbefestigung					-MQ	
	Lagerdeckel	ohne Befestigungs	gewinde			-MG	
Abstreifervariante	erhöhte chemische Beständigkeit				[1]	-A1	
	Hartabstreife	r			[2]	-A2	
	Trockenlauf				[1]	-A3	
Kolbenstangenart	durchgehend	e Kolbenstange			[3]	-S2	
Außengewinde verlängert	verlängertes Kolbenstangen-Außengewinde						
[mm]	1 35		1 70			K2	
Innengewinde	Kolbenstange	e mit Innengewinde	9				
	M6	M8	M10	M10	[4]	-К3	
Sondergewinde	Sondergewin	de an der Kolbens	tange				
	M10	M12	M16	M16		-""K5	
Kolbenstange verlängert [mm]	1 500					К8	
Temperaturbeständigkeit	warmfeste Dichtungen max. 120 °C				-S6		
Tieftemperatur	Dichtungen u	Dichtungen und Schmierfett von −40 °C +80 °C			[5]	-TT	
Zulassung EU	II 2GD				[6]	-EX4	

[1] PPS, A1, A3 Nicht mit S6, TT

Rundzylinder CRHD, Edelstahl

Peripherieübersicht

Befe	Befestigungselemente und Zubehör								
		Beschreibung	CRHD-MQ	CRHD-MC	CRHD-MS	→ Seite/ Internet			
[1]	Flexo-Kupplung CRFK	für den Ausgleich von Radial- und Winkelabweichungen	•	•	-	53			
[2]	Gelenkkopf CRSGS	mit sphärischer Lagerung	•	•	•	53			
[3]	Gabelkopf CRSG	lässt eine Schwenkbewegung des Zylinders in einer Ebene zu	•	•	•	53			
[4]	Mutter CR	für Lagerdeckel	•	-	-	52			
[5]	Lagerbock CRLMC	für Abschlussdeckel	-	•	-	52			
[6]	Näherungsschalter CRSMT	mit Leuchtdiode zur Schaltzustands-anzeige	•	•	•	53			
[7]	Befestigungsbausatz CRSMB-8-3 2/100	für Näherungsschalter CRSMT	•	•	•	54			
[8]	Drossel-Rückschlagventil CRGRLA	zur Geschwindigkeitsregulierung	•	•	•	54			
[9]	Steckverschraubungen CRQS	zum Anschluss von außentolerierten Druckluftschläu- chen	•	•	•	qs			

Typenschlüssel

001	Baureihe
CRHD	Rundzylinder, doppeltwirkend, Edelstahl
002	Kolbendurchmesser
32	32
40	40
50	50
63	63
80	80
100	100
003	Hub
	10 500

004	Dämpfung	
PPV	Pneumatische Dämpfung, beidseitig einstellbar	
005	Positionserkennung	
Α	Für Näherungsschalter	
006	Abschlussdeckelart	
MQ	Ohne Befestigungsgewinde	
MS	Mit Lasche	
MC	Mit Gabel	
ı	Temperaturbereich	
007	remperaturbereich	
007	Standard	

Rundzylinder CRHD, Edelstahl

Datenblatt

PPV-Dämpfung

- **D** - Durchmesser 32 ... 100 mm

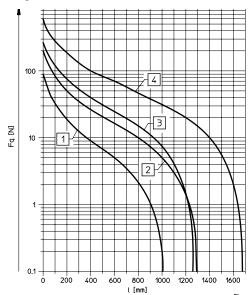
- Hublänge 10 ... 500 mm Variante S6

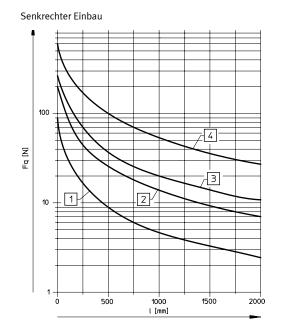
Die Variante S6 ist aufgrund der verwendeten Dichtungen und des verwendeten Fettes nicht für den direkten Kontakt mit Lebensmitteln vorgesehen.

Reparaturservice

Ersatzteilservice

Allgemeine Technische Daten										
Kolben-ø	32	40	50	63	80	100				
Pneumatischer Anschluss	G1/8	G1/8	G1/4	G3/8	G3/8	G3/8				
Kolbenstangengewinde	M10x1,25	M12x1,25	M16x1,5	M16x1,5	M20x1,5	M20x1,5				
Konstruktiver Aufbau	Kolben	Kolben								
	Kolbenstange									
	Zylinderrohr									
Dämpfung	pneumatische	Dämpfung beidseitig	einstellbar							
Dämpfungslänge	17	19,5	21	21	31	31				
Positionserkennung	für Näherungss	für Näherungsschalter								
Befestigungsart	mit Zubehör									
Einbaulage	beliebig									

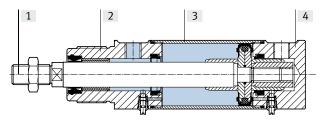

Betriebs- und Umweltbedingungen								
Variante	CRHD	S6						
Betriebsmedium	Druckluft nach ISO 8573-1:2010 [7:4:4]							
Hinweis zum Betriebs-/	geölter Betrieb möglich (im weiteren Betrieb erforderlich)							
Steuermedium								
Betriebsdruck	1 10 bar							
Umgebungstemperatur ¹⁾ [°C]	-20 +80							
Lebensmitteltauglichkeit ²⁾	→ erweiterte Werkstoffinformationen							
Korrosionsbeständigkeit KBK ³⁾	3							


- 1) Einsatzbereich der Näherungsschalter beachten
- Weitere Informationen www.festo.com/sp → Zertifikate.
- 3) Korrosionsbeständigkeitsklasse KBK 3 nach Festo Norm FN 940070
 Starke Korrosionsbeanspruchung. Freibewitterung unter gemäßigten korrosiven Bedingungen. Außenliegende sichtbare Teile im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre mit vorrangig funktioneller Anforderung an die Oberfläche.

Kräfte [N]						
Kolben-Ø	32	40	50	63	80	100
Theoretische Kraft bei 6 bar, Vorlauf	483	754	1178	1870	3016	4712
Theoretische Kraft bei 6 bar, Rücklauf	415	633	990	1682	2721	4418
Gewichte [g]	·	i i	i i	i	i	:
Kolben-Ø	32	40	1 .	1	1	
		40	50	63	80	100
Grundgewicht bei 10 mm Hub	676	1196	1849	63 2977	80 5172	100 8472
· · · · · · · · · · · · · · · · · · ·						
Grundgewicht bei 10 mm Hub	676	1196	1849	2977	5172	8472

Zulässige Querkraft Fq in Abhängigkeit von der Hublänge l

Waagrechter Einbau



- [1] Ø 32
- [2] Ø 40
- [3] Ø 50, 63
- [4] Ø 80, 100

Werkstoffe

Funktionsschnitt

Rund	dzylinder	Grundtyp	S6				
[1]	Kolbenstange	hochlegierter Stahl, rostfrei					
[2]	Lagerdeckel	hochlegierter Stahl, rostfrei					
[3]	Zylinderrohr	hochlegierter Stahl, rostfrei					
[4]	Abschlussdeckel	hochlegierter Stahl, rostfrei					
-	Dichtungen	NBR, TPE-U (PUR) Mediendichtung (modifiziert für FPM					
		Hydrolyse- und Reinigungsbeständigkeit)					

80

100

45°

45°

40

40

50

50

Abmessungen Download CAD-Daten → www.festo.com MQ – Lagerdeckel mit Außengewinde ZJ+ WF PL2 BF VD H C ₹ ₹ [1] Regulierschraube für Endlagendämpfung **=**€1 = zuzüglich Hublänge Ø BE D AM В BG EE Ø Ø [mm] h9 M30x1,5 32 50° 22 30 25 30 8 36 G1/8 M10x1,25 40 45° 24 38 M38x1,5 29 8 45 G1/8 M12x1,25 35 50 45° 32 45 M45x1,5 30 8 55 G1/4 M16x1,5 38 63 45° 32 45 M45x1,5 30 10 68 G3/8 M16x1,5 38

Ø	L7	MM Ø	RD Ø	RT	PL1	PL2	TG	VD	WF	ZJ	= ©1
[mm]											
32	5	12	27	M5	13	21	22	7	38	120	10
40	8	16	35	M6	15	18	30	7	45	135	13
50	5	20	42	M6	15	19	39	6,25	50	143	17
63	8	20	42	M8	17	24	49	6,25	50	158	17
80	9	25	47	M10	18	31	65	7,5	50	174	22
100	13	25	47	M10	22	30	82	7,5	50	189	22

30

30

15

15

86

106

G3/8

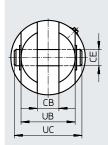
G3/8

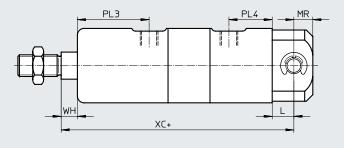
M20x1,5

M20x1,5

38

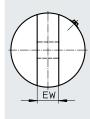
38

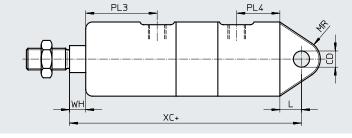

M50x2


M50x2

Abmessungen

Download CAD-Daten → www.festo.com


MC – Abschlussdeckel mit Gabel



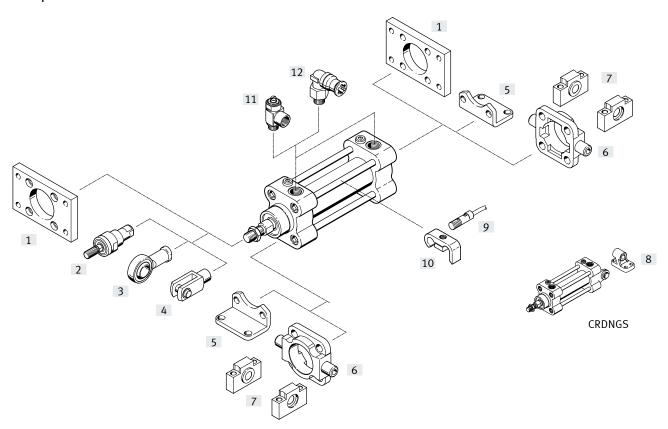
+ = zuzüglich Hublänge

MS – Abschlussdeckel mit Lasche

+ = zuzüglich Hublänge

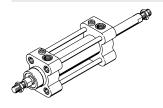
Ø	СВ	CD	CE	EW	L	MR	PL3	PL4	UB	UC	WH	XC
		Ø	Ø									
[mm]	+0,2/+0,1	H9	e8	-0,1/-0,2					-0,1/-0,2			
32	10	10	10	10	15	12	43	28	26	35	8	142
40	12	12	12	12	16	14	50	27	32	43	10	160
50	16	12	12	16	16	14	53	30	40	51	12	170
63	16	16	16	16	22	18	55	34	40	53	12	190
80	20	16	16	20	22	20	56	45	60	73	12	210
100	20	20	20	20	27	25	60	43,5	60	73	12	230

Rundzylinder CRHD, Edelstahl


Datenblatt

Bestellangaben				
Тур	Kolben-ø	Hub	Teile-Nr.	Тур
	[mm]	[mm]		
MQ – Lagerdeckel m	it Außengewind	le		
	32	10 500	195507	CRHD-32PPV-A-MQ
	40	7	195508	CRHD-40PPV-A-MQ
	50	7	195509	CRHD-50PPV-A-MQ
	63	7	195510	CRHD-63PPV-A-MQ
	80		195511	CRHD-80PPV-A-MQ
	100	1	195512	CRHD-100PPV-A-MQ
S6 – Warmfest bis 12				
	32	10 500	195543	CRHD-32PPV-A-MQ-S6
	40	10 500	195544	CRHD-40PPV-A-MQ-S6
	50		195545	CRHD-50PPV-A-MQ-S6
	63		195546	CRHD-63PPV-A-MQ-S6
	80		195547	CRHD-80PPV-A-MO-S6
	100	1	195548	CRHD-100PPV-A-MQ-S6
MC – Abschlussdeck	el mit Gabel (La	igerbolzen und	Sicherung	im Lieferumfang enthalten)
	32	10 500	195513	CRHD-32PPV-A-MC
	40		195514	CRHD-40PPV-A-MC
	50	_	195515	CRHD-50PPV-A-MC
	63		195516	CRHD-63PPV-A-MC
	80	_	195517	CRHD-80PPV-A-MC
	100		195518	CRHD-100PPV-A-MC

Bestellangaben				
Тур	Kolben-ø	Hub	Teile-Nr.	Тур
	[mm]	[mm]		
S6 – Warmfest bis 12	0 °C			
1	32	10 500	195549	CRHD-32PPV-A-MC-S6
	40		195550	CRHD-40PPV-A-MC-S6
¥	50		195551	CRHD-50PPV-A-MC-S6
	63		195552	CRHD-63PPV-A-MC-S6
	80		195553	CRHD-80PPV-A-MC-S6
	100		195554	CRHD-100PPV-A-MC-S6
MS – Abschlussdecke	l mit Lascho			
MIS - ADSCIILUSSUECK	32	10 500	195519	CRHD-32PPV-A-MS
	40	10 500	195520	CRHD-40PPV-A-MS
	50		195521	CRHD-50PPV-A-MS
	63		195522	CRHD-63PPV-A-MS
	80	-	195523	CRHD-80PPV-A-MS
	100		195524	CRHD-100PPV-A-MS
C W C 111 10	- 25			
S6 – Warmfest bis 12	32	10 500	195555	CRHD-32PPV-A-MS-S6
	40	10 500	195556	CRHD-40PPV-A-MS-S6
	50	\dashv	195557	CRHD-50PPV-A-MS-S6
	63	\dashv	195558	CRHD-63PPV-A-MS-56
	80	\dashv	195559	CRHD-80PPV-A-MS-S6
	100	\dashv	195560	CRHD-100PPV-A-MS-S6
	100		195500	CKIID-100-11-1 1-1-110-30


Normzylinder CRDNG, ISO 15552, Edelstahl

Peripherieübersicht

Variante

CRDNG-S2

Peripherieübersicht

		Beschreibung	CRDNG	CRDNGS	→ Seite/ Internet
[1]	Flanschbefestigung CRFNG	für Lager- oder Abschlussdeckel	•	-	49
[2]	Flexo-Kupplung CRFK	für den Ausgleich von Radial- und Winkelabweichungen	•	•	53
[3]	Gelenkkopf CRSGS	mit sphärischer Lagerung	•	•	53
[4]	Gabelkopf CRSG	lässt eine Schwenkbewegung des Zylinders in einer Ebene zu	•	•	53
[5]	Fußbefestigung CRHNC	für Lager- und Abschlussdeckel	•	_	47
[6]	Schwenkzapfen CRZNG	für Lager- und Abschlussdeckel in Verbindung mit Lagerstü- cken CRLNZG	•	_	50
[7]	Lagerstück CRLNZG	zur Aufnahme von Schwenkzapfen CRZNG	•	_	50
[8]	Lagerbock CRLNG	für Variante mit Schwenkflansch	_	•	51
[9]	Näherungsschalter CRSMEO-4	mit Leuchtdiode zur Schaltzustandsanzeige	•	•	53
[10]	Befestigungsbausatz CRSMB	für Näherungsschalter CRSMEO-4	•	•	54
[11]	Drossel-Rückschlagventil CRGRLA	zur Geschwindigkeitsregulierung	•	•	54
[12]	Steckverschraubungen CRQS	zum Anschluss von außentolerierten Druckluftschläuchen	•	•	qs

Normzylinder CRDNG, ISO 15552, Edelstahl

Typenschlüssel

001	Baureihe	
CRDNG	Normzylinder, doppeltwirkend, basierend auf ISO 15552, Edelstahl	
CRDNGS	Normzylinder mit Schwenkflansch, doppeltwirkend, basierend auf ISO 15552, Edelstahl	

002	Kolbendurchmesser	
32	32	
40	40	
50	50	
63	63	
80	80	
100	100	
125	125	

003	Hub	
	10 2000	
004	Dämpfung	
PPV	Pneumatische Dämpfung, beidseitig einstellbar	
005	Positionserkennung	
A	Für Näherungsschalter	
006	Temperaturbereich	
	Standard	
S 6	Warmfeste Dichtungen max. 120 °C	

PPV-Dämpfung

- **Ø** - Durchmesser 32 ... 125 mm

- Hublänge 10 ... 2000 mm

- Reparaturservice

Ersatzteilservice

Variante S2

S6

Die Variante S6 ist aufgrund der verwendeten Dichtungen und des verwendeten Fettes nicht für den direkten Kontakt mit Lebensmitteln vorgesehen.

Entspricht Norm

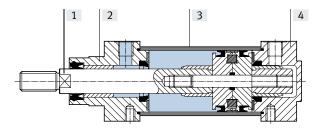
- ISO 15552
- ISO 6431
- VDMA 24562

Allgemeine Technische Da	ten											
Kolben-Ø		32	40	50	63	80	100	125				
Pneumatischer Anschluss	G1/8	G1/4	G1/4	G3/8	G3/8	G1/2	G1/2					
Kolbenstangengewinde		M10x1,25	M12x1,25	M16x1,5	M16x1,5	M20x1,5	M20x1,5	M27x2				
Konstruktiver Aufbau		Kolben										
		Kolbenstange										
		Zylinderrohr										
Dämpfung		pneumatische Dämpfung beidseitig einstellbar										
Dämpfungslänge	[mm]	20	20	23	23	30	30	40				
Positionserkennung		für Näherungsschalter										
Befestigungsart		mit Zubehör										
		mit Innengewi	nde									
Einbaulage		beliebig										

Betriebs- und Umweltbedingungen		
Variante	CRDNG/CRDNGS	S6
Betriebsmedium	Druckluft nach ISO 8573-1:2010 [7:4:4]	
Hinweis zum Betriebs-/ Steuermedium	geölter Betrieb möglich (im weiteren Betrieb erforderlich)	
Betriebsdruck	0,6 10 bar	
Umgebungstemperatur ¹⁾ [°C]	-20 +80	0 +120
Lebensmitteltauglichkeit ²⁾	→ erweiterte Werkstoffinformationen	
Korrosionsbeständigkeit KBK ³⁾	4	

- 1) Einsatzbereich der Näherungsschalter beachten
- 2) Weitere Informationen www.festo.com/sp \rightarrow Zertifikate.
- 3) Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070
 Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Kräfte [N]										
Kolben-ø	32	40	50	63	80	100	125			
Theoretische Kraft bei 6 bar, Vorlauf	482	753	1178	1870	3015	4712	7360			
Theoretische Kraft bei 6 bar, Rücklauf	415	633	990	1682	2720	4418	6880			

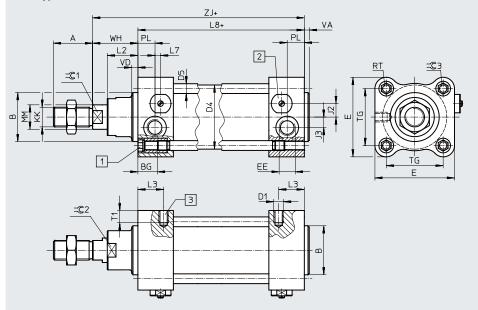

Normzylinder CRDNG, ISO 15552, Edelstahl

Datenblatt

Gewichte [g]											
Kolben-ø	32	40	50	63	80	100	125				
CRDNG											
Grundgewicht bei 0 mm Hub	1045	1360	2160	3455	5935	8070					
Gewichtszuschlag pro 10 mm Hub	20	30	60	60	100	110					
CRDNGS											
Grundgewicht bei 0 mm Hub	1070	1460	2330								
Gewichtszuschlag pro 10 mm Hub	20	30	60								

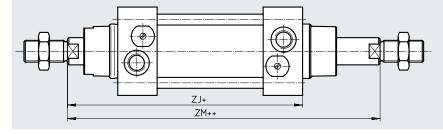
Werkstoffe

Funktionsschnitt CRDNG



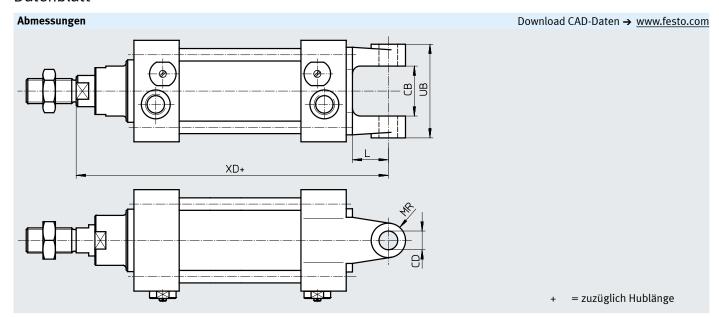
Norr	nzylinder	Grundtyp	S6				
[1]	Kolbenstange	ochlegierter Stahl, rostfrei					
[2]	Lagerdeckel	delstahlguss					
[3]	Zylinderrohr	hochlegierter Stahl, rostfrei					
[4]	Abschlußdeckel	Edelstahlguss					
-	Zuganker	hochlegierter Stahl, rostfrei					
_	Dichtungen	NBR, TPE-U (PUR) Mediendichtung (modifiziert für Hydrolyse- und Reinigungsbeständigkeit)	FPM				

Abmessungen CRDNG


Download CAD-Daten → www.festo.com

Grundtyp

- [1] Innensechskantschraube mit Innengewinde
- [2] Abdeckung für einstellbare Endlagendämpfung
- [3] Gewindebohrung für direkte Befestigung
- + = zuzüglich Hublänge


S2 – Durchgehende Kolbenstange

- + = zuzüglich Hublänge
- ++ = zuzüglich 2x Hublänge

Ø	A	В	BG	D1	D4	D5	E	EE	J2	J3	KK	L2	L3
		Ø			Ø	Ø							
[mm]		e11											
32	22	30	16	M6	33,6	6	50	G1/8	7	5,7	M10x1,25	16	13
40	24	35	16	M6	41,6	6	55	G1/4	10	6,5	M12x1,25	18	16,5
50	32	40	16	M8	52,4	8	65	G1/4	11,5	8,6	M16x1,5	25	21
63	32	45	16	M10	65,4	8	75	G3/8	14,5	12	M16x1,5	25	22
80	40	45	23	M10	82,8	10	100	G3/8	15	13	M20x1,5	31	22,5
100	40	55	23	M12	102,8	10	120	G1/2	23	14	M20x1,5	36	22,5
125	54	60	23	M12	128,6	12	145	G1/2	28,5	8	M27x2	46	23,5

Ø	L7	L8	MM Ø	PL	RT	T1	TG	VA	VD	WH	ZJ	ZM	=©1	=©2	=©3
[mm]															
32	5,3	94 +0,4	12	13	M6	9	32,5	4	6	26	120	148	10	26	6
40	2,5	105 +0,4/-0,6	16	14	M6	9	38	4	6	30	135	167	13	30	6
50	4,5	106 +0,4/-0,6	20	14	M8	10	46,5	4	6	37	143	183	17	34	8
63	5	121 +0,4/-0,6	20	18	M8	12	56,5	4	6	37	158	199	17	36	8
80	6	128 +0,4/-0,6	25	17	M10	15	72	4	7	46	174	222	22	41	10
100	9	138 +0,4/-0,6	25	18	M10	18	89	4	7	51	189	240	22	41	10
125	4,5	160 +0,4/-0,6	32	27	M12	18	110	6	6	66	226	292	27	50	12

Ø	СВ	CD Ø	L	MR	UB	XD
[mm]	H14	Н9				
32	26	10	18	9	45	142
40	28	12	21	10	52	160
50	32	12	23	11	60	170
63	40	16	28	13	70	190
80	50	16	32	13	90	210
100	60	20	37	17	110	230
125	70	25	44	23	130	276

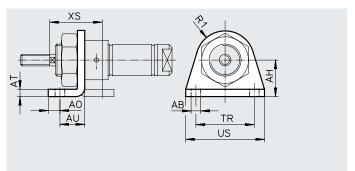
Kolben-ø	Hub	Teile-Nr.	Тур
[mm]	[mm]		
'	•	'	
32	10 2000	160884	CRDNG-32PPV-A
40	10 2000	160885	CRDNG-40PPV-A
50	10 2000	160886	CRDNG-50PPV-A
63	10 2000	160887	CRDNG-63PPV-A
80	10 2000	160888	CRDNG-80PPV-A
100	10 2000	160889	CRDNG-100PPV-A
125	10 2000	185280	CRDNG-125PPV-A
120 °C			
100	10 2000	185293	CRDNG-32PPV-A-S6
40			CRDNG-40PPV-A-S6
50	+		CRDNG-50PPV-A-S6
63	10 2000	185296	CRDNG-63PPV-A-S6
80	10 2000	185297	CRDNG-80PPV-A-S6
100			CRDNG-100PPV-A-S6
125	10 2000	185299	CRDNG-125PPV-A-S6
. V. II			
	10 2000	105202	CRDNG-32PPV-A-S2
			CRDNG-40PPV-A-S2
			CRDNG-50PPV-A-S2
	_		CRDNG-63PPV-A-S2
			CRDNG-80PPV-A-S2
			CRDNG-100PPV-A-S2
			CRDNG-125PPV-A-S2
123	10 2000	10,200	125 111 1 1 1 1 1 1 2
		1	T
	_		CRDNGS-32PPV-A
			CRDNGS-40PPV-A
			CRDNGS-50PPV-A
			CRDNGS-63PPV-A
	_		CRDNCS 100 PRV A
			CRDNCS 125 PRV A
125	10 2000	185281	CRDNGS-125PPV-A
120 °C			
32	10 2000	185300	CRDNGS-32PPV-A-S6
40	10 2000	185301	CRDNGS-40PPV-A-S6
50	10 2000	185302	CRDNGS-50PPV-A-S6
63	10 2000	185303	CRDNGS-63PPV-A-S6
80	10 2000	185304	CRDNGS-80PPV-A-S6
100	10 2000	185305	CRDNGS-100PPV-A-S6
125	10 2000	185306	CRDNGS-125PPV-A-S6
	[mm]	[mm] [mm] [mm]	[mm]

Bestellangaben – \	/erschleißteils	ätze				
Kolben-Ø [mm]	Teile-Nr.	Тур		Kolben-Ø [mm]	Teile-Nr.	Тур
32	125713	CRDNG/S-32PPV-A ¹⁾		63	125716	CRDNG/S-63PPV-A ¹⁾
40	125714	CRDNG/S-40PPV-A ¹⁾		80	125717	CRDNG/S-80PPV-A ¹⁾
50	125715	CRDNG/S-50PPV-A ¹⁾	Ī	100	125718	CRDNG/S-100PPV-A ¹⁾

¹⁾ Montagefett im Lieferumfang enthalten

Datenblatt

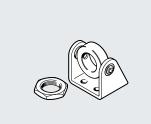
Fußbefestigung CRHBN

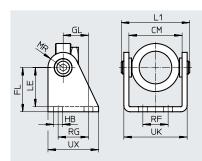

Lieferumfang:

CRHBN-... x1: 1 Fuß

CRHBN-... x2: 2 Füße, 1 Mutter

Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei

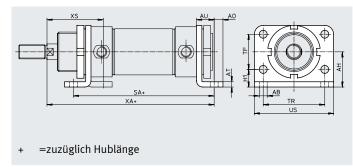



Abmessun	gen und B	estellanga	aben										
für Ø	AB	АН	AO	AT	AU	R1	TR	US	XS	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]	Ø										[g]		
12	5,5	20	6	4	14	13	32	42	32	4	43	161866	CRHBN-12/16x1
16	5,5	20	6	4	14	13	32	42	32	4	107	162999	CRHBN-12/16x2
20	6,6	25	8	5	17	20	40	54	36	4	94	161867	CRHBN-20/25x1
25	6,6	25	8	5	17	20	40	54	40	4	236	162998	CRHBN-2 0/25x2

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Schwenkbefestigung CRSBN

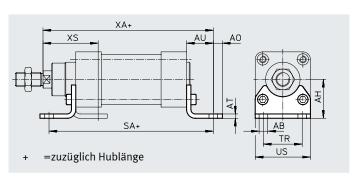

Abmessun	gen und	Bestella	ıngaben												
für Ø	CM	FL	GL	НВ	L1	LE	MR	RF	RG	UK	UX	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
				Ø											
[mm]													[g]		
20	38,1	35	20	7	55	31	12	20	24	50,1	40	4	230	552904	CRSBN-20/25
25															

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (*) auch FN 940082) mit entsprechenden Medien abzusichern.

Fußbefestigung CRH

Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei

Abmessun	gen und	Bestell	angabei	n												
für Ø	AB Ø	АН	AO	AT	AU	H1	SA	TF	TR	US	XA	XS	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]														[g]		
32	7	28	7	4	14	14	124	28	52	66	148	48	4	237	162951	CRH-32
40	9	33	10	5	20	18	153	30	60	80	178	60	4	341	162952	CRH-40
50	9	40	10	6	20	20	160	40	70	90	190	64	4	559	162953	CRH-50
63	9	45	10	6	20	20	164	50	76	96	195	64	4	680	162954	CRH-63


¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

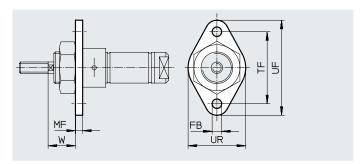
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (

auch FN 940082) mit entsprechenden Medien abzusichern.

Fußbefestigung CRHNC

Abmessu	ngen und E	Bestellang	gaben											
für Ø	AB Ø	АН	AO	AT	AU	SA	TR	US	XA	XS	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]												[g]		
32	7	32	6,5	4	24	142	32	45	144,7	45,7	4	139	176937	CRHNC-32
40	10	36	9	4	28	160,8	36	54	163,6	53,8	4	188	176938	CRHNC-40
50	10	45	9,5	5	31	167,9	45	64	175	63,1	4	341	176939	CRHNC-50
63	10	50	12,5	5	32	184,9	50	75	191,5	64,6	4	424	176940	CRHNC-63
80	12	63	15	6	41	209,9	63	93	215,5	81,6	4	810	176941	CRHNC-80
100	14,5	71	17,5	6	41	220,1	75	110	229,6	85,5	4	990	176942	CRHNC-100
125	16,5	90	22	8	45	250	90	131	270	102	4	1920	176943	CRHNC-125

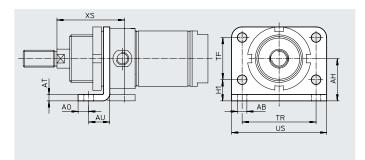
¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070


Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Datenblatt

Flanschbefestigung CRFBN

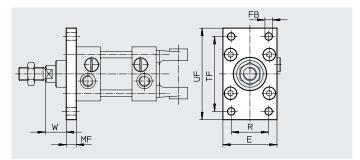
Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei


Abmessun	gen und Bestell	angaben								
für Ø	FB	MF	TF	UF	UR	W	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
	Ø									
[mm]								[g]		
12, 16	5,5	4	40	53	30	18	4	26	161864	CRFBN-12/16
20	6,6	5	50	66	40	19	4	52	161865	CRFBN-20/25
25	6,6	5	50	66	40	23	4	52	161865	CRFBN-20/25

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Flanschbefestigung CRFV

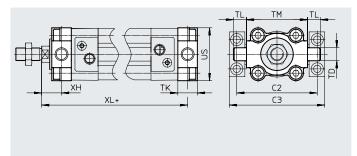


Abmessur	ngen und E	Bestellang	gaben											
für Ø	AB Ø	AH	AO	AT	AU	H1	TF	TR	US	XS	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]												[g]		
32	7	28	7	4	14	14	28	52	66	48	4	102	161858	CRFV-32
40	9	33	10	5	20	18	30	60	80	60	4	190	161859	CRFV-40
50	9	40	10	6	20	20	40	70	90	64	4	290	161860	CRFV-50
63	9	45	10	6	20	20	50	76	96	64	4	365	161861	CRFV-63

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (>> auch FN 940082) mit entsprechenden Medien abzusichern.

Flanschbefestigung CRFNG

Abmessu	ngen und Best	ellangaben									
für Ø	E	FB Ø	MF	R	TF	UF	W	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]		Ø							[g]		
32	45	7	10	32	64	80	16	4	220	161846	CRFNG-32
40	54	9	10	36	72	90	20	4	291	161847	CRFNG-40
50	65	9	12	45	90	110	25	4	526	161848	CRFNG-50
63	75	9	12	50	100	120	25	4	680	161849	CRFNG-63
80	93	12	16	63	126	150	30	4	1508	161850	CRFNG-80
100	110	14	16	75	150	175	35	4	2054	161851	CRFNG-100
125	132	16	20	90	180	210	45	4	3787	185363	CRFNG-125


¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

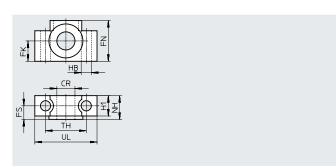
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Schwenkzapfen CRZNG

Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei

Abmessung	en und Bes	stellangab	en										
für Ø	C2	C3	TD	TK	TL	TM	UW	ХН	XL	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
			Ø										
			e9										
[mm]											[g]		
32	71	86	12	16	12	50	50	18	128	4	150	161852	CRZNG-32
40	87	105	16	20	16	63	55	20	145	4	285	161853	CRZNG-40
50	99	117	16	24	16	75	65	25	155	4	473	161854	CRZNG-50
63	116	136	20	24	20	90	75	25	170	4	687	161855	CRZNG-63
80	136	156	20	28	20	110	100	32	188	4	1296	161856	CRZNG-80
100	164	189	25	38	25	132	120	32	208	4	2254	161857	CRZNG-100
125	192	217	25	50	25	160	150	40	250	4	3484	185362	CRZNG-125

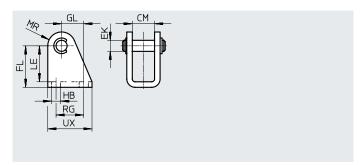
1) Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (+) auch FN 940082) mit entsprechenden Medien abzusichern.


- 🛔 - Hinweis

Zur Montage der Baugröße Ø 125 mm werden Schrauben mit Sonderlänge benötigt.

→ Seite 54

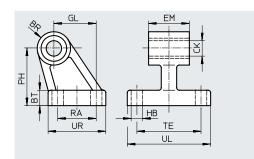
Lagerstücke CRLNZG


Abmessunge	en und Be	stellangab	en										
für Ø	CR	FK	FN	FS	H1	НВ	NH	TH	UL	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
	Ø	Ø				Ø							
[mm]	D11	±0,1				H13		±0,2			[g]		
32	12	15	30	10,5	15	6,6	18	32	46	4	205	161874	CRLNZG-32
32 40, 50	12 16	15 18	30 36	10,5 12	15 18	6,6 9	18 21	32 36	46 55	4	205 323	161874 161875	CRLNZG-32 CRLNZG-40/50
F			_	<u> </u>		6,6 9 11				,	_		_

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070
Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (+) auch FN 940082) mit entsprechenden Medien abzusichern.

Lagerbock CRLBN

Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei


Abmessur	ngen und Bes	stellangabe	n										
für Ø	CM	EK Ø	FL	GL	НВ	LE	MR	RG	UX	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]											[g]		
12, 16	12,1	6	27 +0,3/- 0,2	13	5,5	24	7	15	25	4	39	161862	CRLBN-12/16
20, 25	16,1	8	30 +0,4/- 0,2	16	6,6	26	10	20	32	4	82	161863	CRLBN-2 0/25
32	16,1	10	35 +0,4/- 0,2	18,5	6,6	31	11	24	35	4	106	195866	CRLBN-32
40	18,1	12	40 +0,4/-	24,5	9	35	13	30	45	4	185	195867	CRLBN-40
50, 63	21,1	16	45 +0,5/- 0,2	28	9	39	14	34	50	4	293	195868	CRLBN-5 0/63

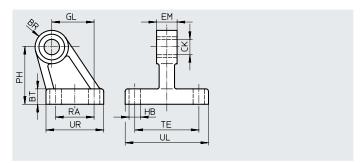
¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Lagerbock CRLNG

Abmessu	ıngen und	Bestell	angabe	n													
für Ø	BR	ВТ	CK	EB	EM	GL	НВ	OF	PH	RA	TE	UL	UR	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
			Ø	ø			ø										
[mm]			D11	H13	-0,4		H13								[g]		
32	10	8	10	-	25,8	21	6,6	-	32	18	38	51	31	4	133	161840	CRLNG-32
40	11	10	12	-	27,8	24	6,6	-	36	22	41	54	35	4	161	161841	CRLNG-40
50	12	12	12	-	31,8	33	9	-	45	30	50	65	45	4	281	161842	CRLNG-50
63	15	12	16	15	39,8	37	9	10,8	50	35	52	67	50	4	370	161843	CRLNG-63
80	15	14	16	18	49,8	47	11	12,7	63	40	66	86	60	4	562	161844	CRLNG-80
100	19	15	20	18	59,8	55	11	13,7	71	50	76	96	70	4	915	161845	CRLNG-100
125	22	20	25	20	69,8	70	14	18,6	90	60	94	124	90	4	2539	176951	CRLNG-125

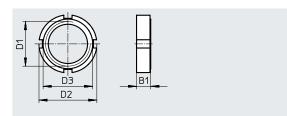
¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070


Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Datenblatt

Lagerbock CRLMC

Werkstoff: Stahl, hochlegiert Kupfer- und PTFE-frei


Abmessur	ngen und	Bestella	ıngaben														
für Ø	BR	BT	CK	EB	EM	GL	НВ	OF	PH	RA	TE	UL	UR	KBK ¹⁾	Ge-	Teile-Nr.	Тур
			Ø	Ø			Ø								wicht		
[mm]			D11	H13	-0,4		H13								[g]		
32	10	8	10	-	10	21	6,6	-	32	18	38	51	31	4	112	197320	CRLMC-32
40	11	10	12	-	12	24	6,6	-	36	22	41	54	35	4	144	197321	CRLMC-40
50	12	12	12	-	16	33	9	-	45	30	50	65	45	4	254	197322	CRLMC-50
63	15	12	16	15	16	37	9	10,8	50	35	52	67	50	4	306	197323	CRLMC-63
80	15	14	16	18	20	47	11	12,7	63	40	66	86	60	4	482	197324	CRLMC-80
100	19	15	20	18	20	55	11	13,7	71	50	76	96	70	4	722	197325	CRLMC-100

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Mutter CR

Abmessun	gen und Bestellangaber	1						
für Ø	B1	D1	D2	D3	KBK ¹⁾	Gewicht	Teile-Nr.	Тур
[mm]						[g]		
32	8	M30x1,5	42	36	4	40	197326	CR-M30x1,5
40	10	M38x1,5	50	48	4	61	197327	CR-M38x1,5
50, 63	10	M45x1,5	60	56	4	89	197328	CR-M45x1,5
80, 100	13	M50x2	75	67	4	228	197329	CR-M50x2

¹⁾ Korrosionsbeständigkeitsklasse KBK 4 nach Festo Norm FN 940070

Besonders starke Korrosionsbeanspruchung. Freibewitterung unter schweren korrosiven Bedingungen. Teile im Bereich aggressiver Medien, z. B. Lebensmittel oder chemische Industrie. Diese Anwendungen sind ggf. durch Sonderprüfungen (→ auch FN 940082) mit entsprechenden Medien abzusichern.

Bestellangaber	n – Kolbenstange	naufsätze korro	sionsbeständig		1	Datenblätter →	Internet: kolbenstangenaufsat:
	für Ø	Teile-Nr.	Тур		fürø	Teile-Nr.	Тур
Gelenkkopf CR	SGS			Gabelkopf CRSG	i		
	12, 16	195580	CRSGS-M6		12, 16	13567	CRSG-M6
~ / \1	20	195581	CRSGS-M8		20	13568	CRSG-M8
	25, 32	195582	CRSGS-M10x1,25		25, 32	13569	CRSG-M10x1,25
	40	195583	CRSGS-M12x1,25		40	13570	CRSG-M12x1,25
	50, 63	195584	CRSGS-M16x1,5		50, 63	13571	CRSG-M16x1,5
	80, 100	195585	CRSGS-M20x1,5		80, 100	13572	CRSG-M20x1,5
	125	195586	CRSGS-M27x2		125	185361	CRSG-M27x2
Flexo-Kupplung	g CRFK						
~	25, 32	2305778	CRFK-M10x1,25				
	40	2305779	CRFK-M12x1,25				
	50, 63	2490673	CRFK-M16x1,5				
~	80, 100	2545677	CRFK-M20x1,5				

Bestellangaben	– Näherungsschalter, magnetisc	h Reed, CRSMEO		Datenblätter → Internet: crsmeo
	Elektrischer Anschluss Kabel	Kabellänge [m]	Teile-Nr.	Тур
~	Schließer			
	Korrosionsbeständig			

9				Datenblätter → Internet: crsmb
eile-Nr. Typ		für Ø	Teile-Nr.	Тур
	Befestigungsbau	satz CRSMB		
64581 CRSMBR-12		32	161763	CRSMB-32
64582 CRSMBR-16		40	161764	CRSMB-40
64583 CRSMBR-20		50	161765	CRSMB-50
64584 CRSMBR-25		63	161766	CRSMB-63
63888 CRSMBR-32		80	161767	CRSMB-80
63889 CRSMBR-40		100	161768	CRSMB-100
63890 CRSMBR-50		125	185365	CRSMB-125
63891 CRSMBR-63				
5	4581 CRSMBR-12 4582 CRSMBR-16 4583 CRSMBR-20 4584 CRSMBR-25 3888 CRSMBR-32 3889 CRSMBR-40 3890 CRSMBR-50	### Befestigungsbau ###################################	Side-Nr. Typ	Für Ø Teile-Nr.

Bestellangab	en – Näherungsschalter für T-Nut, m	agnetoresistiv,	CRSMT-8M			Datenblätter → Internet: crsmt
	Befestigungsart	Schaltaus- gang	Elektrischer Anschluss	Kabellänge [m]	Teile-Nr.	Тур
Schließer						
	von oben in Nut einsetzbar,	PNP	Kabel, 3-adrig	5,0	574380	CRSMT-8M-PS-24V-K-5,0-OE
	bündig mit Zylinderprofil		Kabel, 3-adrig	10,0	574381	CRSMT-8M-PS-24V-K-10,0-OE
			Stecker M8x1, 3-polig	0,3	574383	CRSMT-8M-PS-24V-K-0,3-M8D
			Stecker M12x1, 3-polig	0,3	574382	CRSMT-8M-PS-24V-K-0,3-M12

_	ben – Verbindungsleitungen Elektrischer Anschluss links	Eloktricahar Anaski	ucc rochtc	Vahallänge	Teile-Nr.	Typ	
	Elektrischer Anschluss links	Elektrischer Anschl	uss recnts	Kabellänge [m]	ielle-Nr.	Тур	
1	Dose gerade, M8x1, 3-polig	Kabel, offenes Ende	e, 3-adrig	2,5	541333	NEBU-M8G3-K-2.5-LE3	
		,	,	5	541334	NEBU-M8G3-K-5-LE3	
	Dose gerade, M12x1, 5-polig	Kabel, offenes Ende	e. 3-adrig	2,5	541363	NEBU-M12G5-K-2.5-LE3	
		,	,- 0	5	541364	NEBU-M12G5-K-5-LE3	
~	Dose gewinkelt, M8x1, 3-polig	Kabel, offenes Ende	3-adrig	2,5	541338	NEBU-M8W3-K-2.5-LE3	
	bose geniment, mox1, 5 pong	habet, offeries Ende	,, 5 adrig	5	541341	NEBU-M8W3-K-5-LE3	
	Dose gewinkelt, M12x1, 5-polig	Kabel, offenes Ende	3-adrig	2,5	541367	NEBU-M12W5-K-2.5-LE3	
	bose gewinken, mizzi, 5 pong	Rubel, offeries Effec	, o durig	5	541370	NEBU-M12W5-K-5-LE3	
estellangal	ben – Befestigungsbausatz SMBR					Datenblätter → Interne	et: sn
					Teile-Nr.	Тур	
1.	für Normzylinder CRDSNU		:		538937	SMBR-8-8/100-S6	
estellangal	ben – Befestigungsbausatz CRSMB für Rundzylinder CRHD				Teile-Nr. 525565	Datenblätter → Internet Typ CRSMB-8-3 2/100	t: crs
estellangal	ben – Drossel-Rückschlagventile CF Anschluss Gewinde		Werkstoff		Teile-Nr.	Datenblätter → Interne	t: crg
estellangal	Anschluss Gewinde f	für Steckverschraubung		vtropoliort		Тур	t: crg
estellangal	Anschluss Gewinde f		Werkstoff Edelstahlguss elek	xtropoliert	161403	Typ CRGRLA-M5-B	t: crg
estellangal	Anschluss Gewinde f M5 G1/8	für Steckverschraubung		xtropoliert	161403 161404	CRGRLA-M5-B CRGRLA-1/8-B	t: crg
estellangal	Anschluss Gewinde M5 G1/8 G1/4	für Steckverschraubung		xtropoliert	161403 161404 161405	CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B	t: crg
estellangal	Anschluss Gewinde f M5 G1/8 G1/4 G3/8	für Steckverschraubung		xtropoliert	161403 161404 161405 161406	CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B CRGRLA-3/8-B	t: crg
estellangal	Anschluss Gewinde M5 G1/8 G1/4	für Steckverschraubung		xtropoliert	161403 161404 161405	CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B	t: crg
	Anschluss Gewinde f M5 G1/8 G1/4 G3/8	für Steckverschraubung		xtropoliert	161403 161404 161405 161406	CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B CRGRLA-3/8-B	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS	für Steckverschraubung		xtropoliert	161403 161404 161405 161406	CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B CRGRLA-3/8-B CRGRLA-1/2-B	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss	Für Steckverschraubung CRQS/CRQSL/CRQST	Edelstahlguss elek	xtropoliert	161403 161404 161405 161406 161407	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde [für Steckverschraubung CRQS/CRQSL/CRQST Volumen	Edelstahlguss elek		161403 161404 161405 161406 161407	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-1/4-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde [G1/8 G1/8	Für Steckverschraubung CRQS/CRQSL/CRQST Volumen l]	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr.	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde [G1/8 G1/4 G1/8 G1/4	Für Steckverschraubung CRQS/CRQSL/CRQST Volumen l] 0,1	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr.	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/4	Für Steckverschraubung CRQS/CRQSL/CRQST Volumen I] 0,1 0,4 0,75	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/4 G1/2	Volumen II 0,1 0,75	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/4 G1/2 G1, G3/8	Volumen II D,1 D,4 D,75 2	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236 192159	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2 CRVZS-5	
	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/4 G1/2 G1, G3/8	Volumen II 0,1 0,75	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2	
estellangal	Anschluss Gewinde M5 G1/8 G1/8 G1/4 G3/8 G1/2 Den - Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/2 G1, G3/8 G1, G3/8 G1, G3/8 Den - Druckluftschlauch	Volumen II D,1 D,4 D,75 2	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236 192159 160237	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2 CRVZS-5 CRVZS-10 Datenblätter → Internet: se	et: cr
estellangal	Anschluss Gewinde M5 G1/8 G1/4 G3/8 G1/2 ben – Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/4 G1/2 G1, G3/8 G1, G3/8	Volumen II D,1 D,4 D,75 2	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236 192159	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2 CRVZS-5 CRVZS-10 Datenblätter → Internet: se	et: cr
estellangal	Anschluss Gewinde M5 G1/8 G1/8 G1/4 G3/8 G1/2 Den - Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/2 G1, G3/8 G1, G3/8 G1, G3/8 Den - Druckluftschlauch	Volumen II D,1 D,4 D,75 2	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236 192159 160237	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2 CRVZS-5 CRVZS-10 Datenblätter → Internet: se	et: crv
estellangal	Anschluss Gewinde M5 G1/8 G1/8 G1/4 G3/8 G1/2 Den - Druckluftspeicher CRVZS Anschluss Gewinde G1/8 G1/4 G1/4 G1/4 G1/2 G1, G3/8 G1, G3/8 G1, G3/8 Den - Druckluftschlauch außentoleriert	Volumen II D,1 D,4 D,75 2	Edelstahlguss elek		161403 161404 161405 161406 161407 Teile-Nr. 160233 160234 160235 160236 192159 160237	Typ CRGRLA-M5-B CRGRLA-1/8-B CRGRLA-3/8-B CRGRLA-1/2-B Datenblätter → Internet Typ CRVZS-0,1 CRVZS-0,4 CRVZS-0,75 CRVZS-2 CRVZS-5 CRVZS-10 Datenblätter → Internet: se	et: crv

¹⁾ Packungseinheit in Stück