EduTrainer® Compact/Universal

FESTO

Handbuch

Bestell-Nr.: 759613 Stand: 07/2016

Autoren: Hans-Jürgen Eberhardt, Marc Eggelhöfer, Jürgen Haußmann, Remo Jedelhauser

Redaktion: Frank Ebel

Grafik: Hans-Jürgen Eberhardt, Remo Jedelhauser, Albert Sigel

© Festo Didactic SE, Rechbergstraße 3, 73770 Denkendorf, Deutschland, 2017 Alle Rechte vorbehalten.

+49 711 34754-88500 did@festo.com

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten, insbesondere das Recht, Patent-, Gebrauchsmuster- oder Geschmacksmusteranmeldungen durchzuführen.

Hinweis

)

Die Verwendung nur einer Geschlechtsform soll keine geschlechtsspezifische Benachteiligung sein, sondern dient nur der besseren Lesbarkeit und dem besseren Verständnis der Formulierungen.

Inhalt

1	Für Ihre Sicherheit	6
1.1	Bestimmungsgemäß verwenden	6
1.2	Piktogramme	6
1.3	Sicher arbeiten	7
2	Montageanleitungen	9
2.1	Steuerungen montieren	9
2.1.1	Allen Bradley	9
2.1.2	Festo	10
2.1.3	Siemens	11
2.1.4	Mitsubishi	12
2.2	Erweiterung um zusätzliche Ein-/Ausgänge	12
2.3	Parallelschaltung von 19" Modulen	13
2.4	Trägersystem umbauen	13
3	Trägersysteme	15
3.1	Trägersystem EduTrainer® Compact	15
3.1.1	Aufbau und Funktion	16
3.1.2	In Betrieb nehmen	16
3.1.3	Technische Daten	16
3.2	Trägersystem EduTrainer® Universal mit Spannungsversorgung	17
3.2.1	Aufbau und Funktion	17
3.2.2	In Betrieb nehmen	18
3.2.3	Technische Daten	18
4	19" Modul 16DIN	19
4.1	Aufbau und Funktion	19
4.2	In Betrieb nehmen	20
4.3	Technische Daten	20
4.4	Kontaktbelegungstabelle	20
5	19" Modul 16DOUT	21
5.1	Aufbau und Funktion	21
5.2	In Betrieb nehmen	22
5.3	Technische Daten	22
5.4	Kontaktbelegungstabelle	22
6	19" Modul 8DIN	23
6.1	Aufbau und Funktion	
6.2	In Betrieb nehmen	
6.3	Technische Daten	
6 /1	Kontakthelegungstahelle	2/

7	19" Modul 8DIN, ohne Schalter	25
7.1	Aufbau und Funktion	25
7.2	In Betrieb nehmen	26
7.3	Technische Daten	26
7.4	Kontaktbelegungstabelle	26
8	19" Modul 8DOUT	27
8.1	Aufbau und Funktion	27
8.2	In Betrieb nehmen	28
8.3	Technische Daten	28
8.4	Kontaktbelegungstabelle	28
9	19" Modul 4DOUTR	29
9.1	Aufbau und Funktion	29
9.2	In Betrieb nehmen	29
9.3	Technische Daten	30
10	19" Modul 4AIN/2AOUT	31
10.1	Aufbau und Funktion	31
10.2	In Betrieb nehmen	32
10.3	Technische Daten	32
10.4	Kontaktbelegungstabelle	32
11	19" Modul 4AIN/2AOUT, ohne Simulation	33
11.1	Aufbau und Funktion	33
11.2	In Betrieb nehmen	34
11.3	Technische Daten	34
11.4	Kontaktbelegungstabelle	34
12	19" Modul Wortverarbeitung	35
12.1	Aufbau und Funktion	36
12.2	In Betrieb nehmen	36
12.3	Bedienung	36
12.4	Technische Daten	37
12.5	Kontaktbelegungstabelle	37
13	19" Modul Systemstecker 37-polig	39
13.1	Aufbau und Funktion	39
13.2	In Betrieb nehmen	39
13.3	Technische Daten	40
13.4	Kontaktbelegungstabelle	40

14	19" Modul Systemstecker SysLink	43
14.1	Aufbau und Funktion	44
14.2	In Betrieb nehmen	44
14.3	Technische Daten	45
14.4	Kontaktbelegungstabelle	45
15	19" Modul AS-Interface	47
15.1	Aufbau und Funktion	47
15.2	In Betrieb nehmen	48
15.3	Technische Daten	48
15.4	Kontaktbelegungstabelle	48
16	19" Modul 24 V/0 V	49
16.1	Aufbau und Funktion	49
16.2	In Betrieb nehmen	49
16.3	Technische Daten	50
17	19" Modul 24 V	51
17.1	Aufbau und Funktion	51
17.2	In Betrieb nehmen	51
17.3	Technische Daten	52
18	19" Modul 0 V	53
18.1	Aufbau und Funktion	53
18.2	In Betrieb nehmen	53
18.3	Technische Daten	54
19	19" Leerplatten	55
20	Wartung und Pflege	56
20.1	Reinigung	56
20.2	Sicherungswechsel	56
21	Entsorgung	56

1 Für Ihre Sicherheit

1.1 Bestimmungsgemäß verwenden

Das SPS EduTrainer® Trägersystem ist nur zu benutzen:

- für die bestimmungsgemäße Verwendung im Lehr- und Ausbildungsbetrieb
- in sicherheitstechnisch einwandfreiem Zustand

Das System ist nach dem heutigen Stand der Technik und den anerkannten sicherheitstechnischen Regeln gebaut. Dennoch können bei dessen unsachgemäßer Verwendung Gefahren für Leib und Leben des Benutzers oder Dritter und Beeinträchtigungen des Systems entstehen.

Das Ausbildungsunternehmen und/oder die Ausbildenden hat/haben dafür Sorge zu tragen, dass die Auszubildenden die Sicherheitsvorkehrungen, die in diesem Handbuch beschrieben sind, beachten. Festo Didactic schließt hiermit jegliche Haftung für Schäden des Auszubildenden, des Ausbildungsunternehmens und/oder sonstiger Dritter aus, die bei Gebrauch/Einsatz dieses Gerätesatzes außerhalb einer reinen Ausbildungssituation auftreten; es sei denn Festo Didactic hat solche Schäden vorsätzlich oder grob fahrlässig verursacht.

Störungen, die die Sicherheit beeinträchtigen können, dürfen beim Schulungsbetrieb nicht erzeugt werden und sind umgehend zu beseitigen.

1.2 Piktogramme

Dieses Handbuch und die beschriebene Hardware enthalten Hinweise auf mögliche Gefahren, die bei unsachgemäßem Einsatz des Systems auftreten können. Folgende Piktogramme werden verwendet:

Warnung

... bedeutet, dass bei Missachten schwerer Personen- oder Sachschaden entstehen kann.

Vorsicht

... bedeutet, dass bei Missachten Personen- oder Sachschaden entstehen kann.

Warnung

... bedeutet, dass vor Montage-, Reparatur-, Wartungs- und Reinigungsarbeiten das Gerät auszuschalten und der Netzstecker zu ziehen ist. Beachten Sie das Handbuch, insbesondere alle Hinweise zur Sicherheit. Bei Missachten kann schwerer Personen- oder Sachschaden entstehen.

1.3 Sicher arbeiten

Das Netzgerät ist in Schutzklasse I gemäß DIN EN 61558-1 aufgebaut. Es ist mit einer VDE-geprüften Netzleitung mit Schutzleiter ausgestattet und darf nur an 110/230 V Wechselspannungsnetzen mit Schutzerdung betrieben bzw. angeschlossen werden.

Lebensgefahr bei unterbrochenem Schutzleiter!

- Der Schutzleiter (gelb/grün) darf weder außerhalb noch innerhalb des Geräts unterbrochen werden.
- Die Isolierung des Schutzleiters darf weder beschädigt noch entfernt werden.
- In gewerblichen Einrichtungen sind die Unfallverhütungsvorschriften der DGUV Vorschrift 3 "Elektrische Anlagen und Betriebsmittel" zu beachten.
- In Schulen und Ausbildungseinrichtungen ist das Betreiben von Netzgeräten durch geschultes Personal verantwortlich zu überwachen

Vorsicht!

Kondensatoren im Gerät können noch geladen sein, selbst wenn das Gerät von allen Spannungsquellen getrennt wurde.

- Beim Ersetzen von Sicherungen: Verwenden Sie nur vorgeschriebene Sicherungen mit der richtigen Nennstromstärke.
- Schalten Sie Ihr Netzgerät niemals sofort ein, wenn es von einem kalten in einen warmen Raum gebracht wird. Das dabei entstehende Kondenswasser kann unter ungünstigen Umständen Ihr Gerät zerstören. Lassen Sie das Gerät ausgeschaltet, bis es Zimmertemperatur erreicht hat.

Lebensgefahr durch Reihenschaltung von Netzgeräten!

Berührungsspannungen > 25 V DC sind nicht zulässig. Spannungen > 120 V DC können bei Berührung tödlich sein.

- Schalten Sie keine Spannungsquellen hintereinander.
- Lüftungsschlitze von Netzgeräten dürfen nicht abgedeckt werden! Die Geräte sind auf harte, schwer entflammbare Unterlagen zu stellen, so dass die Luft ungehindert in die Geräte eintreten kann. Die Kühlung der Geräte erfolgt überwiegend durch Konvektion.
- Stellen Sie die Geräte so auf, dass das Betätigen von Schaltern und Trenneinrichtungen nicht erschwert wird.
- Bei Arbeiten unter Spannung: Verwenden Sie nur ausdrücklich geeignetes Werkzeug.

Lebensgefahr durch elektrischen Schlag!

Schützen Sie die Ausgänge der Netzgeräte (Ausgangsbuchsen/-klemmen) und daran angeschlossene Leitungen vor direkter Berührung.

- Verwenden Sie nur Leitungen mit ausreichender Isolation bzw. Spannungsfestigkeit.
- Verwenden Sie Sicherheitssteckbuchsen mit berührungssicheren Kontaktstellen.
- Bei
 - sichtbarer Beschädigung,
 - defekter Funktion,
 - unsachgemäßer Lagerung oder
 - unsachgemäßem Transport

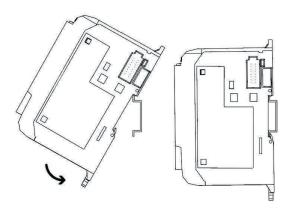
ist kein gefahrloser Betrieb des Geräts mehr möglich.

- Schalten Sie sofort die Spannung ab.
- Schützen Sie das Gerät vor unbeabsichtigtem Wiedereinschalten.
- Herstellen bzw. abbauen von elektrischen Verbindungen nur in spannungslosem Zustand!
- Verwenden Sie nur Kleinspannungen, maximal 24 V DC.
- Decken Sie nicht benutzte Einschubplätze des Trägersystems durch 19" Leerplatten ab.
- Decken Sie nicht benutzte Kabeleinführungen des Trägersystems durch die mitgelieferten Abdeckungen ab.

2 Montageanleitungen

Warnung

Führen Sie Montagearbeiten nur bei gezogenem Netzstecker aus.


2.1 Steuerungen montieren

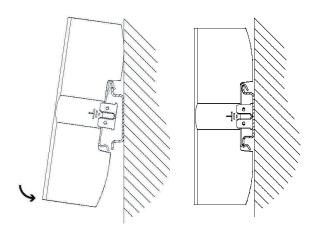
Vorsicht

Demontieren Sie eine Steuerung oder eine Erweiterungsbaugruppe nicht im verdrahteten Zustand von der Hutschiene. Entfernen Sie vor der Demontage einer Steuerung oder einer Erweiterungsbaugruppe alle Kabelverbindungen.

2.1.1 Allen Bradley

Montieren:

- 1. Hängen Sie die obere Nut an der Hutschiene ein.
- 2. Drücken Sie die Steuerung nach unten und gleichzeitig gegen die Hutschiene, bis der Befestigungsriegel einrastet. Achten Sie darauf, dass die beiden Befestigungsriegel in der oberen (gesicherten) Position sind.


- Demontieren:

- 1. Stecken Sie einen Flachklingen-Schraubendreher in den Befestigungsriegel auf der Unterseite der Steuerung.
- 2. Halten Sie die Steuerung und hebeln Sie den Befestigungsriegel nach unten. Der Riegel bleibt in der geöffneten Position. Wiederholen Sie den Vorgang für den zweiten Befestigungsriegel. Sie können die Steuerung jetzt von der Hutschiene abnehmen.

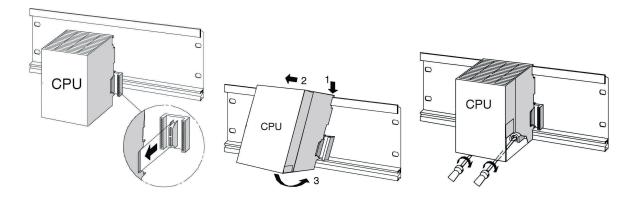
Hinweis

Weitere Informationen zur Montage oder Demontage der Steuerung oder einzelner Erweiterungsbaugruppen entnehmen Sie bitte den Handbüchern des Steuerungsherstellers.

2.1.2 Festo

Montieren:

- 1. Neigen Sie die Steuerung und lehnen Sie die Steuerung an die Rückwand oberhalb der Hutschiene an.
- 2. Verschieben Sie nun die Steuerung so weit nach unten, bis die Hutschienenklammern an der Hutschiene aufliegen.
- 3. Drücken Sie anschließend die untere Hälfte der Steuerung an die Hutschiene an.


- Demontieren:

- 1. Umfassen Sie das Gehäuse der Steuerung indem Sie den Daumen Ihrer Hand auf die Unterseite, und die anderen Finger derselben Hand auf die Oberseite der Steuerung auflegen.
- 2. Hebeln Sie die Steuerung von der Hutschiene indem Sie mit gemäßigtem Druck Ihres Daumens auf die Unterseite der Steuerung, die Unterseite zu sich hin ziehen. Ein eindeutiges Rastgeräusch vermittelt Ihnen anschließend, dass das Gerät nun entriegelt ist und somit der Hutschiene entnommen werden kann.

Hinweis

Weitere Informationen zur Montage oder Demontage der Steuerung oder einzelner Erweiterungsbaugruppen entnehmen Sie bitte den Handbüchern des Steuerungsherstellers.

2.1.3 Siemens

- Montieren:

- 1. Stellen Sie eine Verbindung zu den weiteren Baugruppen her, indem Sie an die CPU einen Busverbinder stecken (siehe Bildausschnitt)
- 2. Hängen Sie die CPU ein (1).
- 3. Schieben Sie sie bis an die linke Baugruppe (2).
- 4. Schwenken Sie sie erst jetzt nach unten (3).
- 5. Schrauben Sie die Baugruppen handfest auf die Profilschiene.
- 6. Verwenden Sie eine CPU mit MMC, stecken Sie diese in den Modulschacht.
- 7. Rechts neben der CPU müssen Sie noch jeweils eine Digitaleingabe- und eine Digitalausgabebaugruppe montieren. Wiederholen Sie dazu die Schritte 1 bis 6.

Hinweis

Es darf nur das interne Netzteil, ER Netzteil oder Tischnetzteil von Festo Didactic verwendet werden. Andere Netzteile sind nicht zugelassen.

Hinweis

Weitere Informationen zur Montage oder Demontage der Steuerung oder einzelner Erweiterungsbaugruppen entnehmen Sie bitte den Handbüchern des Steuerungsherstellers.

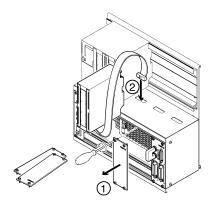
2.1.4 Mitsubishi

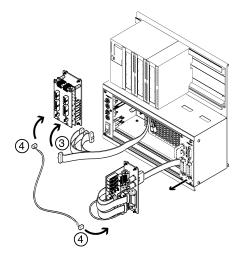
- Montieren:

Die Steuerung wird durch Einrasten auf der Hutschiene (DIN EN 50022) montiert.

Demontieren:

Zur Demontage der Steuerung heben Sie die Schnellbefestigung mit einem Schraubendreher ab und nehmen die Steuerung von der Schiene.

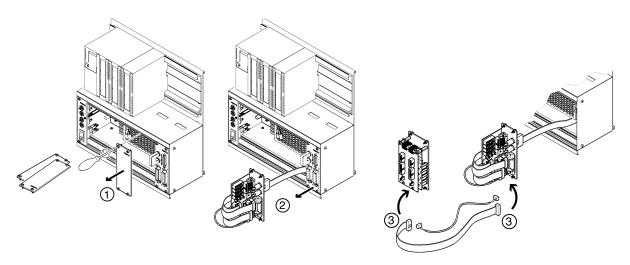

Hinweis


Weitere Informationen zur Montage oder Demontage der Steuerung oder einzelner Erweiterungsbaugruppen entnehmen Sie bitte den Handbüchern des Steuerungsherstellers.

2.2 Erweiterung um zusätzliche Ein-/Ausgänge

Der Einbauvorgang ist exemplarisch mit einer Siemens Steuerung dargestellt. Prinzipiell ist der Vorgang bei allen Steuerung gleich. Nur die Befestigungsart der Steuerung am Trägersystem unterscheidet sich.

- 1. Entfernen Sie die Leerplatten soweit nötig.
- 2. Führen Sie das Flachbandkabel der neuen E/A-Baugruppe durch die Kabeleinführung in das Gehäuse und montieren Sie die Baugruppe.
- 3. Verbinden Sie die Flachbandkabel mit dem gewählten 19" Modul.
- 4. Verbinden Sie hierzu das neue 19" Modul mit dem letzten angeschlossenen 19" Modul (z.B. Modul Systemstecker SysLink) über die 3-polige 24 V Versorgungsleitung.

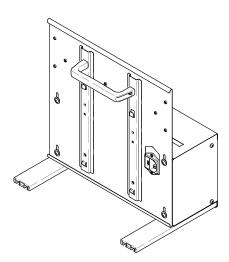


Hinweis

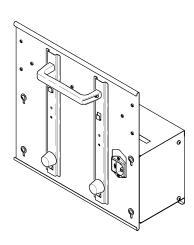
Nicht benutzte Einschubplätze sind durch 19" Leerplatten abzudecken. Nicht benutzte Kabeleinführungen sind mit den mitgelieferten Abdeckungen zu verschließen.

2.3 Parallelschaltung von 19" Modulen

- 1. Entfernen Sie die Leerplatten soweit nötig.
- 2. Bauen Sie das 19" Modul, zu dem Sie ein neues 19" Modul parallel schalten wollen aus (z. B. das Modul Systemstecker SysLink).
- 3. Verbinden Sie das Erweiterungsmodul mit dem Modul SysLink. Die konkrete Steckverbindung ersehen Sie aus der Beschreibung der jeweiligen 19" Module in diesem Handbuch.

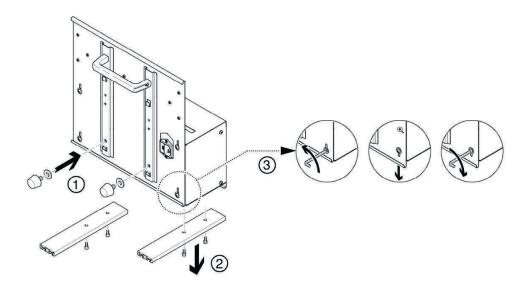

Hinweis

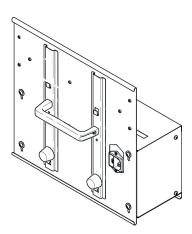
Nicht benutzte Einschubplätze sind durch 19" Leerplatten abzudecken. Nicht benutzte Kabeleinführungen sind mit den mitgelieferten Abdeckungen zu verschließen.


2.4 Trägersystem umbauen

Das Trägersystem kann problemlos von einer Rack-Variante zu einer A4-Variante umgebaut werden und umgekehrt.

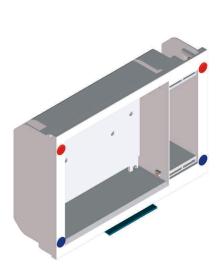
Rack-Variante:

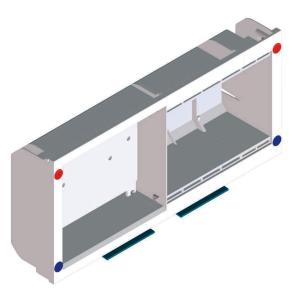

A4-Variante:


Umbau der Rack-Variante in eine A4-Variante

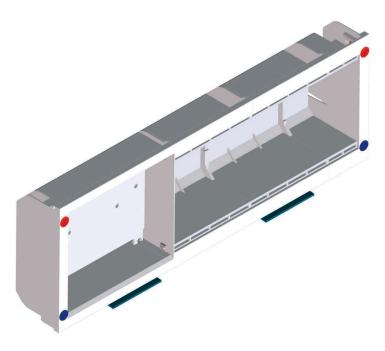
Der jeweilige Umbausatz kann bei der Festo Didactic bestellt werden.

- 1. Gummipuffer und Unterlagscheiben von Hand einschrauben und festdrehen.
- 2. Aluminiumleisten mit Innensechskantschlüssel lösen und entfernen.
- 3. Schrauben an der Gehäuserückwand mit Innensechskantschlüssel lösen, Gehäuserückwand auf Anschlag nach unten verschieben, Schrauben an der Gehäuserückwand wieder festdrehen.


Falls Sie die A4-Variante schräg auf den Tisch stellen möchten, müssen Sie den Tragegriff in die unten dargestellte Position montieren.


3 Trägersysteme

Im Folgenden werden die Trägersysteme der beiden Baureihen EduTrainer® Compact und EduTrainer® Universal beschrieben.


3.1 Trägersystem EduTrainer® Compact

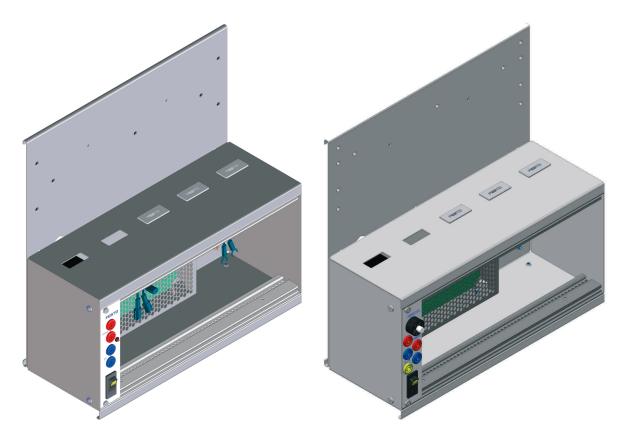
Größe 1: ER-Abschlussgehäuse (links) zur Aufnahme der Steuerung mit unterschiedlichen Tragschienen und ein ER-Abschlussgehäuse (rechts) zur Aufnahme von 19" Modulen mit einer Breite von max. 9 TE

Größe 2: ER-Abschlussgehäuse (links) zur Aufnahme der Steuerung mit unterschiedlichen Tragschienen, ein ER-Gehäusemittelteil und ein ER-Abschlussgehäuse (rechts) zur Aufnahme von 19" Modulen mit einer Breite von max. 33 TE

Größe 3: ER-Abschlussgehäuse (links) zur Aufnahme der Steuerung mit unterschiedlichen Tragschienen, zwei ER-Gehäusemittelteile und ein ER-Abschlussgehäuse (rechts) zur Aufnahme von 19" Modulen mit einer Breite von max. 57 TE

3.1.1 Aufbau und Funktion

Mit dem Trägersystem des EduTrainers® Compact ist es möglich, Steuerungen verschiedener Hersteller mit Simulations- und 4 mm Anschlussplatten zu kombinieren. Das Trägersystem ist in drei Größen wählbar.


3.1.2 In Betrieb nehmen

Schließen Sie den EduTrainer® Compact mit Laborleitungen mit 4 mm Sicherheitssteckern an die 24 V DC Spannungsversorgung an.

3.1.3 Technische Daten

Elektrik/Mechanik			
Betriebsspannung	24 V DC		
Ausgangsspannung	Entspricht Eingangsspannung		
Sicherung	3,15 A träge		
Ausgangsstrom	max. 4,0 A		
Anschluss	4 mm Sicherheitssteckbuchsen 3-polige Stecker zur internen Versorgung der Module		
Größe 1	171 mm x 243 mm x 82 mm (SPS plus 9 TE)		
Größe 2	171 mm x 365 mm x 82 mm (SPS plus 33 TE)		
Größe 3	171 mm x 487 mm x 82 mm (SPS plus 57 TE)		
Maximale Breite/Höhe der SPS	160 mm/130 mm		
CE - Kennzeichnung	Nach Niederspannungsrichtlinie Nach EMV Richtlinie Störaussendung geprüft nach EN 61000-6-3 Störfestigkeit geprüft nach EN 61000-6-1		
Änderungen vorbehalten			

3.2 Trägersystem EduTrainer® Universal mit Spannungsversorgung

Trägersystem EduTrainer® Universal mit Spannungsversorgung (alte Version)

Trägersystem EduTrainer® Universal mit Spannungsversorgung (neue Version)

3.2.1 Aufbau und Funktion

Mit dem Trägersystem des EduTrainers® Universal ist es möglich, Steuerungen verschiedener Hersteller mit Simulationsplatten und 4 mm Anschlussplatten zu kombinieren. Das Trägersystem ist in zwei Größen und zwei Varianten wählbar. Mit dem integrierten 19" Modul Spannungsversorgung werden die eingebauten Simulations- und 4 mm Anschlussplatten mit Spannung versorgt und über einen Wippschalter zentral einoder ausgeschaltet.

Spannungsversorgung (Bild links)

Auf der Frontseite befindet sich der Netzschalter mit Anzeige, eine Kontroll-LED für 24 V, 4 mm Sicherheitssteckbuchsen für 24 V und 0 V.

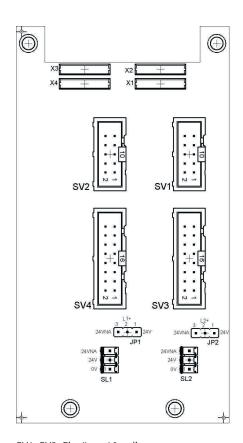
Spannungsversorgung "limited power" (Bild rechts)

Auf der Frontseite befindet sich der Netzschalter mit Anzeige, eine Kontroll-LED für 24 V, eine rückstellbare 4 A Sicherung, 4 mm Sicherheitssteckbuchsen für 24 V und 0 V sowie eine Sicherheitssteckbuchse zum Anschluss des Schutzleiters.

Sollte die Sicherung auslösen, kann sie mit einem Drücken auf den weißen Knopf wieder zurückgesetzt werden.

Warnung

Bei gestecktem Netzkabel liegt vom Netzschalter bis zum Netzteil Spannung an (110/230 V AC)! Führen Sie Montagearbeiten nur bei gezogenem Netzstecker aus.


- 1. Montieren Sie ggf. die gewünschten Simulations- und 4 mm Anschlussplatten.
- 2. Schließen Sie den SPS EduTrainer® an die Labor-Spannungsversorgung an.
- 3. Schalten Sie den Netzschalter ein.

3.2.3 Technische Daten

Elektrik/Mechanik	
Betriebsspannung	110 V – 230 V AC 50 – 60 Hz
Eingangsstrom	1,3 A – 0,65 A AC
Ausgangsspannung	24 V DC ± 3%
Sicherung	3,15 A träge
Ausgangsstrom	max. 4,0 A
Anschluss	4 mm Sicherheitssteckbuchsen 3-poliger Stecker zur internen Versorgung der Module
Frontplattenbreite Spannungsversorgung	6 TE (1 TE = 1/5" = 5,08 mm)
Größe 1	297 mm x 305 mm x 120 mm (60 TE)
Größe 2	297 mm x 458 mm x 120 mm (90 TE)
Maximale Breite/Höhe der SPS bei Größe 1	295 mm/125 mm
Maximale Breite/Höhe der SPS bei Größe 2	448 mm/125 mm
CE - Kennzeichnung	Nach Niederspannungsrichtlinie Nach EMV Richtlinie Störaussendung geprüft nach EN 61000-6-3 Störfestigkeit geprüft nach EN 61000-6-1
Änderungen vorbehalten	,

4 19" Modul 16DIN

SV1, SV2: Eingänge 10-polig SV3, SV4: Eingänge 16-polig

JP1, JP2: Versorgung über 24 V oder 24 V NA SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

4.1 Aufbau und Funktion

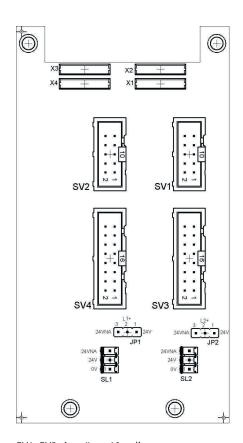
Das 19" Modul 16DIN erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es besitzt 16 digitale Eingänge auf 4 mm Sicherheitssteckbuchsen und 16 Schalter/Taster für die Signalsimulation.

Die Eingangssignale einer SPS werden entweder über die 4 mm Sicherheitssteckbuchsen oder parallel über die Taster an die Steuerung anlegt. Jeder Taster besitzt eine Rast- und eine Tastfunktion. Damit können Sie statische oder impulsförmige Signale generieren.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV1/SV2 10-polig.
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1/SV2 oder SV3/SV4 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Über die Jumper JP1 bzw. JP2 ist festgelegt, dass die Eingangsbaugruppe direkt über 24V versorgt wird.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

4.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Eingangsspannung	0 V – Betriebsspannung	
Eingangsimpedanz	Siehe SPS Handbuch	
Strombelastbarkeit	max. 4,0 A	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	12 TE	
Änderungen vorbehalten		


4.4 Kontaktbelegungstabelle

Pin	SV1	SV2	SV3	SV4
1	L1+	L2+	OV	OV
2	IO	I10	17	I17
3	I1	I11	ov	OV
4	I2	I12	I6	I16
5	I3	I13	oV	ov
6	I4	I14	I5	I15
7	I5	I15	OV	ov
8	I6	I16	I4	I14

Pin	SV1	SV2	SV3	SV4
9	I7	I17	L1+	L2+
10	ov	ov	13	I13
11	_	_	L1+	L2+
12	_	_	I2	I12
13	_	_	L1+	L2+
14	_	_	I1	I11
15	_	_	L1+	L2+
16	_	_	IO	I10

5 19" Modul 16DOUT

SV1, SV2: Ausgänge 10-polig SV3, SV4: Ausgänge 16-polig

JP1, JP2: Versorgung der Ausgangsbaugruppen

über 24 V oder 24 V NA

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

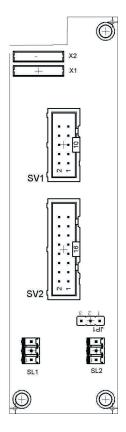
5.1 Aufbau und Funktion

Das 19" Modul 16DOUT erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Das Modul hat 16 digitale Ausgänge auf 4 mm Sicherheitssteckbuchsen. Gelbe Status LEDs zeigen den Zustand der Ausgänge an.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV1/SV2 10-polig.
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1/SV2 oder SV3/SV4 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24 V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Mit den Jumpern JP1 bzw. JP2 legen Sie fest, ob die Ausgangsbaugruppe über 24 V direkt oder über 24 V NA versorgt wird. 24 V NA wird bei NOT-AUS abgeschaltet.
 - Brücke zwischen Pin 1 und 2: Versorgung über 24 V.
 - Brücke zwischen Pin 2 und 3: Versorgung über 24 V NA.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

5.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang SPS: siehe SPS Handbuch	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	12 TE	
Änderungen vorbehalten		


5.4 Kontaktbelegungstabelle

Pin	SV1	SV2	SV3	SV4
1	L1+	L2+	OV	ov
2	Q0	Q10	Q7	Q17
3	Q1	Q11	ov	ov
4	Q2	Q12	Q6	Q16
5	Q3	Q13	ov	ov
6	Q4	Q14	Q5	Q15
7	Q5	Q15	ov	ov
8	Q6	Q16	Q4	Q14

Pin	SV1	SV2	SV3	SV4
9	Q7	Q17	L1+	L2+
10	ov	OV	Q3	Q13
11	_	_	L1+	L2+
12	_	_	Q2	Q12
13	_	_	L1+	L2+
14	_	_	Q1	Q11
15	_	_	L1+	L2+
16	_	_	Q0	Q10

6 19" Modul 8DIN

SV1: Eingänge 10-polig SV2: Eingänge 16-polig

JP1: Versorgung über 24 V oder 24 V NA

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

6.1 Aufbau und Funktion

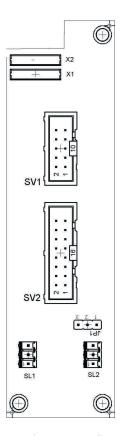
Das 19" Modul 8DIN erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es besitzt 8 digitale Eingänge auf 4 mm Sicherheitssteckbuchsen und 8 Schalter/Taster für die Signalsimulation.

Die Eingangssignale einer SPS werden entweder über die 4 mm Sicherheitssteckbuchsen oder parallel über die Taster an die Steuerung anlegt. Jeder Taster besitzt eine Rast- und eine Tastfunktion. Damit können Sie statische oder impulsförmige Signale generieren.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV2: Siemens S7 (16-polig)
 - SV1: andere Steuerungstypen (10-polig).
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1 oder SV2 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Über den Jumper JP1 ist festgelegt, dass die Eingangsbaugruppe direkt über 24 V versorgt wird.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

6.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Eingangsspannung	0 V – Betriebsspannung	
Eingangsimpedanz	Siehe SPS Handbuch	
Strombelastbarkeit	max. 4,0 A	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		


6.4 Kontaktbelegungstabelle

Pin	SV1	SV2
1	L1+	OV
2	Ю	I7
3	I1	OV
4	I2	I6
5	13	OV
6	I4	I5
7	I5	oV
8	I6	I4

Pin	SV1	SV2	
9	I7	L1+	
10	ov	I3	
11	_	L1+	
12	_	I2	
13	_	L1+	
14	_	I1	
15	_	L1+	
16	_	IO	

7 19" Modul 8DIN, ohne Schalter

SV1: Eingänge 10-polig SV2: Eingänge 16-polig

JP1: Versorgung über 24 V oder 24 V NA

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

7.1 Aufbau und Funktion

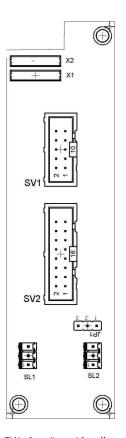
Das 19" Modul 8DIN erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es besitzt 8 digitale Eingänge auf 4 mm Sicherheitssteckbuchsen. Gelbe Status LEDs zeigen den Zustand der Eingänge an.

Die Eingangssignale einer SPS werden über die 4 mm Sicherheitssteckbuchsen an die Steuerung anlegt.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV2: Siemens S7 (16-polig)
 - SV1: andere Steuerungstypen (10-polig).
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1 oder SV2 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Über den Jumper JP1 ist festgelegt, dass die Eingangsbaugruppe direkt über 24 V versorgt wird.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

7.3 **Technische Daten**

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Eingangsspannung	0 V – Betriebsspannung	
Eingangsimpedanz	Siehe SPS Handbuch	
Strombelastbarkeit	max. 4,0 A	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		


7.4 Kontaktbelegungstabelle

Pin	SV1	SV2	
1	L1+	0V	
2	10	I7	
3	I1	ov	
4	I2	I6	
5	13	ov	
6	14	I5	
7	15	ov	
8	16	I4	

Pin	SV1	SV2	
9	I7	L1+	
10	ov	I3	
11	_	L1+	
12	_	I2	
13	_	L1+	
14	_	I1	
15	_	L1+	
16	_	IO	

8 19" Modul 8DOUT

SV1: Ausgänge 10-polig SV2: Ausgänge 16-polig

JP1: Versorgung über 24 V oder 24 V NA

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

8.1 Aufbau und Funktion

Das 19" Modul 8DOUT erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Das Modul hat 8 digitale Ausgänge auf 4 mm Sicherheitssteckbuchsen. Gelbe Status LEDs zeigen den Zustand der Ausgänge an.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV2: Siemens S7 (16-polig)
 - SV1: andere Steuerungstypen (10-polig).
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1 oder SV2 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Über den Jumper JP1 ist festgelegt, ob die Ausgangsbaugruppe direkt über 24 V oder über 24 V NA versorgt wird. 24 V NA wird bei NOT-AUS abgeschaltet.
 - Brücke zwischen Pin 1 und 2: Versorgung über 24 V.
 - Brücke zwischen Pin 2 und 3: Versorgung über 24 V NA.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

8.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang SPS: siehe SPS Handbuch	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		

8.4 Kontaktbelegungstabelle

Pi	n	SV1	SV2	
1		L1+	OV	
2		Q0	Q7	
3		Q1	OV	
4		Q2	Q6	
5		Q3	OV	
6		Q4	Q4	
7		Q5	OV	
8		Q6	Q4	

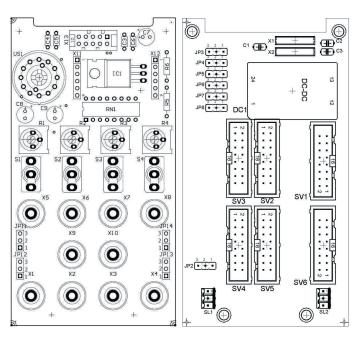
Pin	SV1	SV2	
9	Q7	L1+	
10	ov	Q3	
11	_	L1+	
12	_	Q2	
13	_	L1+	
14	_	Q1	
15	_	L1+	
16	_	Q0	

9 19" Modul 4DOUTR

9.1 Aufbau und Funktion

Das 19" Modul 4DOUTR erweitert den Funktionsumfang Ihres SPS EduTrainer $^{\otimes}$ Systems. Das Modul führt 4 Relaisausgänge auf 4 mm Sicherheitssteckbuchsen.

9.2 In Betrieb nehmen


- 1. Verbinden Sie die Ausgänge durch 8 Einzeladern mit der SPS/LOGO!
- 2. Schrauben Sie das 19" Modul in den Rahmen.

9.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Kontaktstrom	10 A bei ohmscher Last 3 A bei induktiver Last	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		

10 19" Modul 4AIN/2AOUT

SV3, SV4: analoge Ein-/Ausgänge S7 20-polig SV2, SV5: analoge Ein-/Ausgänge S7 40-polig SV1 bzw. SV6: analoge Ein-/Ausgänge 16-polig JP2: Versorgung über 24 V oder 24 V NA

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung JP11, JP12, JP13, JP14: Umschaltung von 0...10 V nach ±10 V

10.1 Aufbau und Funktion

Das 19" Modul 4AIN/2AOUT erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Das Modul ermöglicht den Anschluss von 4 analogen Spannungseingängen und 2 analogen Spannungsausgängen einer SPS über 4 mm Sicherheitssteckbuchsen. Die Spannungswerte werden auf dem eingebauten Display angezeigt. Die Auswahl der angezeigten Spannung erfolgt über einen Wahlschalter.

Zeigt der Kippschalter zur 4 mm Sicherheitssteckbuchse werden die Prozess-Signale erfasst. Zeigt der Kippschalter zum Potenziometer, kann durch drehen des Potenziometerknopfes eine veränderliche Spannung eingespeist werden.

Der Spannungsbereich kann zwischen über die Jumper JP11 (UR1), JP12 (UR2), JP13 (UR3) und JP14 (UR4) eingestellt werden. Mit einer Brücke zwischen Pin 2 und Pin3 läßt sich die Spannung zwischen 0...10V einstellen. Eine Brücke zwischen Pin1 und Pin2 ergibt einen Einstellbereich von ±10 V.

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV2/SV5: Siemens S7 integrierte Analogbaugruppe mit 40-poligem Stecker(2 x 16-polig)
 - SV1/SV6: andere Steuerungstypen (16-polig).
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV1 oder SV6 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24 V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 4. Mit dem Jumper JP2 legen Sie fest, ob die Ausgangsbaugruppe über 24 V direkt oder über 24V NA versorgt wird. 24 V NA wird bei NOT-AUS abgeschaltet.
 - Brücke zwischen Pin 1 und 2: Versorgung über 24 V.
 - Brücke zwischen Pin 2 und 3: Versorgung über 24 V NA.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

10.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Ein-/Ausgangsspannung	0 – 10 V DC bzw. ± 10 V DC	
Eingangsimpedanz	Siehe SPS Handbuch	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang SPS: siehe SPS Handbuch	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	12 TE	
Änderungen vorbehalten		

10.4 Kontaktbelegungstabelle

Pin	SV1	SV2	SV3	SV4	SV5	SV6
1	UA1	OV	IE3	ov	OV	UA1
2	IA2	IE3	OV	IA2	IA2	IA2
3	UA2	OV	IE3	OV	OV	UA2
4	IA1	UE3	UE3	OV	UA2	IA1
5	OV	OV	IE3	OV	OV	OV
6	_	OV	IE2	UA2	IA1	_
7	IE2	ov	IE3	OV	OV	IE2
8	IE4	IE2	OV	IA1	UA1	IE4
9	IE1	L1	L1	UE4	UE4	IE1
10	IE3	UE2	UE2	OV	ı	IE3
11	OV	L1	L1	UE4	UE4	OV
12	UE4	OV	IE1	UA1	ı	UE4
13	UE2	L1	L1	UE4	UE4	UE2
14	UE3	IE1	OV	IE4	0V	UE3
15	UE1	L1	L1	UE4	UE4	UE1
16	_	UE1	UE1	OV	IE4	_

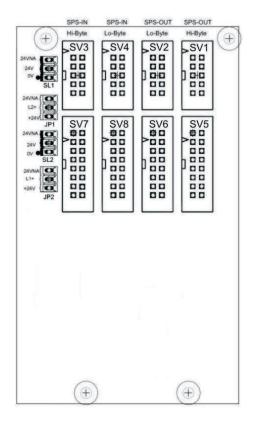
11 19" Modul 4AIN/2AOUT, ohne Simulation

11.1 Aufbau und Funktion

Das 19" Modul 4AIN/2AOUT erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Das Modul ermöglicht den Anschluss von 4 analogen Spannungseingängen und 2 analogen Spannungsausgängen einer SPS über 4 mm Sicherheitssteckbuchsen.

- 1. Verbinden Sie die Ausgänge durch 8 Einzeladern mit der SPS/LOGO!
- 2. Schrauben Sie das 19" Modul in den Rahmen.

11.3 Technische Daten


Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Ein-/Ausgangsspannung	0 – 10 V DC bzw. ± 10 V DC	
Eingangsimpedanz	Siehe SPS Handbuch	
Ausgangsstrom	Modul: max. 4,0 A pro Ausgang SPS: siehe SPS Handbuch	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		

11.4 Kontaktbelegungstabelle

Pin	SV1	SV2	SV3	SV4	SV5	SV6
1	UA1	ov	IE3	OV	ov	UA1
2	IA2	IE3	OV	IA2	IA2	IA2
3	UA2	OV	IE3	OV	OV	UA2
4	IA1	UE3	UE3	OV	UA2	IA1
5	OV	ov	IE3	OV	OV	0V
6	_	ov	IE2	UA2	IA1	_
7	IE2	ov	IE3	OV	OV	IE2
8	IE4	IE2	OV	IA1	UA1	IE4
9	IE1	L1	L1	UE4	UE4	IE1
10	IE3	UE2	UE2	0V	_	IE3
11	OV	L1	L1	UE4	UE4	0V
12	UE4	OV	IE1	UA1	_	UE4
13	UE2	L1	L1	UE4	UE4	UE2
14	UE3	IE1	OV	IE4	OV	UE3
15	UE1	L1	L1	UE4	UE4	UE1
16	_	UE1	UE1	OV	IE4	_

12 19" Modul Wortverarbeitung

SV1, SV2: Ausgänge 10-polig (High/Low Byte) SV3, SV4: Eingänge 10-polig (High/Low Byte) SV5, SV6: Ausgänge 16-polig (High/Low Byte) SV7, SV8: Eingänge 16-polig (High/Low Byte) JP1, JP2: Versorgung über 24 V oder 24 V NA SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

Vorsicht

Diese Baugruppe ist zum direkten Anschluss an eine SPS konzipiert und darf nicht parallel zu anderen Baugruppen geschaltet werden. Die Ausgänge der Baugruppe könnten dadurch zerstört werden.

12.1 Aufbau und Funktion

Das 19" Modul Wortverarbeitung erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es besitzt 16 digitale Eingänge und 16 digitale Ausgänge, ein zweizeiliges Display zur Anzeige sowie 4 Taster zum Einstellen der Ein- und Ausgangswerte.

Die Eingangs- und Ausgangssignale des Moduls werden über 10- bzw. 16-polige Flachbandstecker mit den Aus-/Eingängen der SPS verbunden. Über ein Tastenfeld kann der Wert des Eingangswortes der SPS eingestellt werden. Das Ein-/Ausgangswort der SPS wird auf einem zweizeiligen Display dargestellt. Die Darstellung des Ein-/Ausgangswortes kann im hexadezimal (HEX), dezimal (DEZ) oder binary coded dezimal (BCD) Format erfolgen.

12.2 In Betrieb nehmen

- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV5/SV6/SV7/SV8: Siemens S7 (16-polig)
 - SV1/SV2/SV3/SV4: andere Steuerungstypen (10-polig).
- 2. Verbinden Sie die 24 V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 3. Über die Jumper JP1 bzw. JP2 ist festgelegt, dass die Eingangsbaugruppe direkt über 24 V versorgt wird.
- 4. Schrauben Sie das 19" Modul in den Rahmen.

12.3 Bedienung

Das Ausgangswort der SPS wird direkt in der zweiten Zeile des Displays dargestellt. Um das Format der Darstellung zu ändern gehen Sie wie folgt vor:

- Drücken Sie solange die → Taste bis der Cursor am Ende der zweiten Zeile blinkt.
- Über die Tasten ↑↓ ändern Sie das Darstellungsformat.
- Mit der Taste ENTER speichern Sie ihre Einstellungen.

Der Wert des Eingangswortes der SPS wird in der ersten Zeile des Displays dargestellt. Zum Ändern des Wertes gehen Sie wie folgt vor:

- Wählen Sie mit der → Taste die zu ändernde Stelle des Eingangswortes aus. Sie wird durch den blinkenden Cursor angezeigt.
- Stellen Sie mit den Tasten ↑↓ den gewünschten Wert ein.
- Wenn alle Stellen des Eingangswortes eingestellt sind, bestätigen Sie die Eingabe mit der ENTER Taste. Durch diese Bestätigung wird der eingestellte Wert an die SPS ausgegeben.

Die Einstellung des Darstellungsformates erfolgt wie beim Ausgangswort.

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Eingangsspannung	0 V – Betriebsspannung	
Eingangsimpedanz	Siehe SPS Handbuch	
Ausgangsspannung/Ausgangsstrom	Betriebsspannung/0,3 mA, nicht kurzschlussfest	
Anschluss	10-/16-polige Flachbandstecker	
Frontplattenbreite	12 TE	
Änderungen vorbehalten		

12.5 Kontaktbelegungstabelle

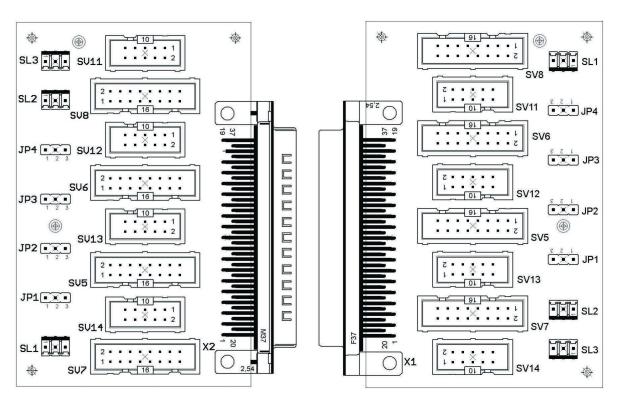
Pin	SV1	SV2	SV3	SV4	SV5	SV6	SV7	SV8
1	L2+	L2+	L1+	L1+	0V	OV	0V	OV
2	Q8	Q0	I8	IO	Q8	Q0	I8	IO
3	Q9	Q1	19	I1	ov	ov	ov	ov
4	Q10	Q2	I10	I2	Q9	Q1	19	I1
5	Q11	Q3	I11	13	ov	ov	ov	ov
6	Q12	Q4	I12	I4	Q10	Q2	I10	I2
7	Q13	Q5	I13	I5	ov	ov	ov	ov
8	Q14	Q6	I14	16	Q11	Q3	I11	13
9	Q15	Q7	I15	17	L2+	L2+	L1+	L1+
10	ov	ov	ov	ov	Q12	Q4	I12	I4
11	_	_	_	_	L2+	L2+	L1+	L1+
12	_	_	_	_	Q13	Q5	I13	I5
13	_	_	_	_	L2+	L2+	L1+	L1+
14	_	_	_	_	Q14	Q6	I14	I6
15	_	_	_	_	L2+	L2+	L1+	L1+
16	_	_	_	_	Q15	Q7	I15	I7

13 19" Modul Systemstecker 37-polig

13.1 Aufbau und Funktion

Das 19" Modul Systemstecker 37-polig erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es ermöglicht den Anschluss von 32 digitalen Eingängen über einen 37-polige Sub-D Stecker sowie von 32 digitalen Ausgängen über eine 37-polige Sub-D Buchse.

13.2 In Betrieb nehmen


- 1. Verbinden Sie die Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV7/SV5/SV6/SV8: Siemens S7 (16-polig)
 - SV14/SV13/SV12/SV11: andere Steuerungstypen (10-polig).
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV7/SV5/SV6/SV8 oder SV14/SV13/SV12/SV11 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die 24 V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1, SL2 bzw. SL3.
- 4. Über die Jumper JP1, JP2, JP3 und JP4 wird festgelegt, ob die SPS Baugruppe direkt über 24 V oder über 24 V NA versorgt wird. 24 V NA wird bei NOT-AUS abgeschaltet.
 - Brücke zwischen Pin 1 und 2: Versorgung über 24 V.
 - Brücke zwischen Pin 2 und 3: Versorgung über 24 V NA.
- 5. Schrauben Sie das 19" Modul in den Rahmen.

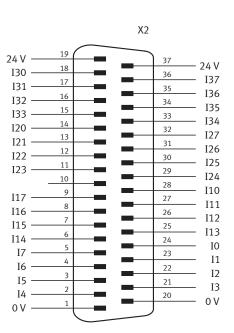
Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Eingangsspannung	0 V – Betriebsspannung	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang SPS: siehe SPS Handbuch	
Anschluss Ausgänge	37-polige Sub-D Buchse	
Anschluss Eingänge	37-poliger Sub-D Stecker	
Frontplattenbreite	9 TE	
Änderungen vorbehalten		

13.4 Kontaktbelegungstabelle

Stecker SPS Eingänge

Buchse SPS Ausgänge

SV14, SV13, SV12, SV11: Eingänge 10-polig SV7, SV5, SV6, SV8: Eingänge 16-polig JP1, JP2, JP3, JP4: Versorgung über 24 V oder 24 V NA SL1, SL2, SL3: Anschlüsse 24 V DC Versorgungsspannung SV14, SV13, SV12, SV11: Ausgänge 10-polig SV7, SV5, SV6, SV8: Ausgänge 16-polig JP1, JP2, JP3, JP4: Versorgung über 24 V oder 24 V NA SL1, SL2, SL3: Anschlüsse 24 V DC Versorgungsspannung


Pin	SV7	SV14	SV5	SV13	SV6	SV12	SV8	SV11
1	0 V	L1+	0 V	L2+	0 V	L1+	0 V	L2+
2	I7	IO	I17	I10	I27	I20	I37	I30
3	0 V	I1	0 V	I11	0 V	I21	0 V	I31
4	I6	I2	I16	I12	I26	I22	I36	I32
5	0 V	I3	0 V	I13	0 V	I23	0 V	I33
6	I5	I4	I15	I14	I25	I24	I35	I34
7	0 V	I5	0 V	I15	0 V	I25	0 V	I35
8	I4	I6	I14	I16	I24	I26	I34	I36
9	L1+	I7	L2+	I17	L1+	127	L2+	I37
10	I3	0 V	I13	0 V	I23	0 V	I33	0 V
11	L1+	_	L2+	_	L1+	_	L2+	_
12	I2	_	I12	_	I22	_	I32	_
13	L1+	_	L2+	_	L1+	_	L2+	_
14	I1	_	I11	_	I21	_	I31	_
15	L1+	_	L2+	_	L1+	_	L2+	_
16	10	_	I10	_	I20	-	I30	_

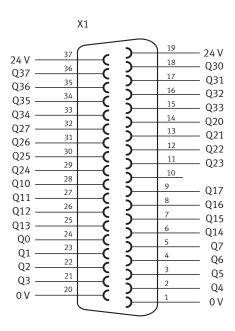
Belegung der Pfostenstecker (SPS Eingänge)

Pin	X2
1	0 V
2	I4
3	I5
4	I6
5	I7
6	I14
7	I15
8	I16
9	I17
10	_
11	I23
12	I22

Pin	X2
13	I21
14	I20
15	I33
16	I32
17	I31
18	I30
19	24 V
20	0 V
21	I3
22	I2
23	I1
24	IO

Pin	X2
25	I13
26	I12
27	I11
28	I10
29	I24
30	I25
31	I26
32	I27
33	I34
34	I35
35	I36
36	I37
37	24 V

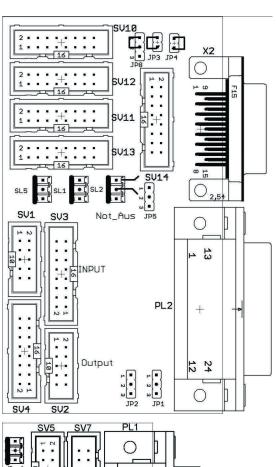
Belegung des 37-poligen Steckers (SPS Eingänge)

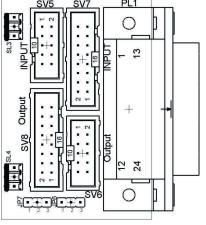

Pin	SV7	SV14	SV5	SV13	SV6	SV12	SV8	SV11
1	0 V	L1+	0 V	L2+	0 V	L3+	0 V	L4+
2	Q7	Q0	Q17	Q10	Q27	Q20	Q37	Q30
3	0 V	Q1	0 V	Q11	0 V	Q21	0 V	Q31
4	Q6	Q2	Q16	Q12	Q26	Q22	Q36	Q32
5	0 V	Q3	0 V	Q13	ov	Q23	ov	Q33
6	Q5	Q4	Q15	Q14	Q25	Q24	Q35	Q34
7	0 V	Q5	0 V	Q15	0 V	Q25	0 V	Q35
8	Q4	Q6	Q14	Q16	Q24	Q26	Q34	Q36
9	L1+	Q7	L2+	Q17	L3+	Q27	L4+	Q37
10	Q3	οV	Q13	0 V	Q23	0 V	Q33	0 V
11	L1+	_	L2+	_	L3+	_	L4+	_
12	Q2	_	Q12	_	Q22	_	Q32	_
13	L1+	_	L2+	_	L3+	_	L4+	_
14	Q1	-	Q11	_	Q21	_	Q31	_
15	L1+	_	L2+	_	L3+	_	L4+	_
16	Q0	_	Q10	_	Q20	_	Q30	_

Belegung der Pfostenstecker (SPS Ausgänge)

Pin	X1
1	0 V
2	Q4
3	Q5
4	Q6
5	Q7
6	Q14
7	Q15
8	Q16
9	Q17
10	_
11	Q23
12	Q22

Pin	X1
13	Q21
14	Q20
15	Q33
16	Q32
17	Q31
18	Q30
19	24 V
20	0 V
21	Q3
22	Q2
23	Q1
24	Q0


Pin	X1
25	Q13
26	Q12
27	Q11
28	Q10
29	Q24
30	Q25
31	Q26
32	Q27
33	Q34
34	Q35
35	Q36
36	Q37
37	24 V



Belegung der 37-poligen Buchse (SPS Ausgänge)

14 19" Modul Systemstecker SysLink

SV1, SV2, SV5, SV6: Ein-/Ausgänge 10-polig

SV3, SV4, SV7, SV8: Ein-/Ausgänge 16-polig

SV10: analoge E/As (S7 40-polig oben)

SV11: analoge E/As (S7 40-polig unten)

SV12: analoge E/As (S7 20-polig oben)

SV13: analoge E/As (S7 20-polig unten)

SV14: analoge E/As

JP2: Digitale Ausgänge Byte 1 über 24 V oder 24 V NA

JP5: Analoge Ausgänge über 24 V oder 24 V NA

JP7: Digitale Ausgänge Byte 0 über 24 V oder 24 V NA

JP8: Verbindung von NOT-AUS auf Bit 1.5

SL1, SL2: Anschlüsse 24 V DC Versorgungsspannung

X2: Analoge Ein-/Ausgänge

PL1, PL2: Digitale Ein-/Ausgänge

14.1 Aufbau und Funktion

Das 19" Modul SysLink erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems.

Über zwei Centronicsstecker A und B können Sie je 8 digitale 24V E/As über entsprechende Kabel mit ihrem Modell (z. B. MPS) verbinden. Ein Brückenstecker ermöglicht das Abschalten von Ausgängen im NOT-AUS Fall.

Die Stecker A und B sind werkseitig wie folgt eingestellt:

- A: Station (24 V über NOT-AUS Brücke)
- B: Bedienen (24 V Dauer)

Die Änderung dieser Einstellung ist über die Jumper JP2 und JP7 möglich.

Die Buchse C ermöglicht den Anschluss von 4 analogen Eingängen und 2 analogen Ausgängen.

14.2 In Betrieb nehmen

- 1. Verbinden Sie die digitalen Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV1/SV2 und SV5/SV6 10-polig.
- 2. Bei paralleler Verwendung von Baugruppen können Sie diese über die jeweils freien Pfostenstecker SV1 bis SV8 mittels Flachbandkabel verbinden.
- 3. Verbinden Sie die analogen Ein-/Ausgänge durch ein Flachbandkabel mit der SPS
 - SV12/SV13: Siemens S7 analoge Zusatzbaugruppe mit 20-poligem Stecker(2 x 16-polig)
 - SV10/SV11: Siemens S7 integrierte Analogbaugruppe mit 40-poligem Stecker(2 x 16-polig)
 - SV14: andere Steuerungstypen (16-polig).
- 4. Bei paralleler Verwendung von Baugruppen können Sie diese über den freien Pfostenstecker SV14 mittels Flachbandkabel verbinden.
- 5. Verbinden Sie die 24 V Spannungsversorgung durch den 3-poligen Pfostenstecker SL1 bzw. SL2.
- 6. Mit den Jumpern JP2, JP5 und JP7 legen Sie fest, ob die SPS Ausgangsbaugruppen über 24 V direkt oder über 24 V NA versorgt wird. 24 V NA wird bei NOT-AUS abgeschaltet.
 - Brücke zwischen Pin 1 und 2: Versorgung über 24 V NA.
 - Brücke zwischen Pin 2 und 3: Versorgung über 24 V.
- 7. Über den Kurzschlussstecker kann ein NOT-AUS realisiert werden. (24 V NA werden getrennt.)
- 8. Schrauben Sie das 19" Modul in den Rahmen.

Hinweis

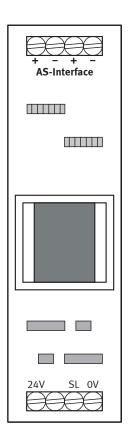
Bei allen Vorzugsvarianten ist Jumper JP8 von NOT-AUS auf Bit 1.5 gesteckt (JP8: Pin 1 und 2 verbunden).

Den Jumper JP8 benötigen Sie, wenn Sie eine MPS Station mit dem Modul verbinden. Bei anderen Anwendungen des Moduls muss der Jumper JP8 entfernt werden (JP8: Pin 2 und 3 verbunden.)

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
Digitale Ein-/Ausgänge		
Eingangsspannung	0 V – Betriebsspannung	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang	
	SPS: siehe SPS Handbuch	
Analoge Ein-/Ausgänge		
Ein-/Ausgangsspannung	0 – 10 V DC bzw. ± 10 V DC	
Eingangsimpedanz	Siehe SPS Handbuch	
Ausgangsstrom	Modul: max. 0,5 A pro Ausgang	
	SPS: siehe SPS Handbuch	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	9 TE	
Änderungen vorbehalten		

14.4 Kontaktbelegungstabelle

14.4.1 Analoge Ein-Ausgänge


Pin	SV14	SV10	SV13	SV11	SV12	X2
1	UA1	GNDE	OV	GNDA	IE3	UA1
2	IA2	IE3	IA2	IA2	GNDE	UA2
3	UA2	GNDE	ov	GNDA	IE3	GNDA
4	IA1	UE3	GNDA	UA2	UE3	IE2
5	GNDA	GNDE	ov	GNDA	IE3	IE1
6	_	GNDE	UA2	IA1	IE2	GNDE
7	IE2	GNDE	ov	GNDA	IE3	UE2
8	IE4	IE2	IA1	UA1	GNDE	UE1
9	IE1	L3+	UE4	UE4	L3+	IA2
10	IE3	UE2	GNDA	_	UE2	IA1
11	GNDE	L3+	UE4	UE4	L3+	_
12	UE4	GNDE	UA1	_	IE1	IE4
13	UE2	L3+	UE4	UE4	L3+	IE3
14	UE3	IE1	IE4	GNDE	GNDE	UE4
15	UE1	L3+	UE4	UE4	L3+	UE3
16	_	UE1	GNDE	IE4	UE1	_

14.4.2 Digitale Ein-/Ausgänge

Pin	SV5	SV6	SV7	SV8	PL1	SV1	SV2	SV3	SV4	PL2
1	24V	L2+	0V	0V	Q0	24V_1	L12+	0V_1	0V_1	Q10
2	10	Q0	I7	Q7	Q1	I10	Q10	I17	Q17	Q11
3	I1	Q1	ov	ov	Q2	I11	Q11	0V_1	0V_1	Q12
4	I2	Q2	I6	Q6	Q3	I12	Q12	I16	Q16	Q13
5	I3	Q3	ov	ov	Q4	I13	Q13	0V_1	0V_1	Q14
6	I4	Q4	I5	Q5	Q5	I14	Q14	I15	Q15	Q15
7	I5	Q5	ov	ov	Q6	I15	Q15	0V_1	0V_1	Q16
8	16	Q6	I4	Q4	Q7	I16	Q16	I14	Q14	Q17
9	I7	Q7	24V	L2+	L1+	I17	Q17	24V_1	L12+	L11+
10	OV	ov	I3	Q3	L1+	0V_1	0V_1	I13	Q13	L11+
11	_	_	24V	L2+	ov	_	_	24V_1	L12+	0V_1
12	_	_	I2	Q2	ov	_	_	I12	Q12	0V_1
13	_	_	24V	L2+	IO	_	_	24V_1	L12+	I10
14	_	_	I1	Q1	I1	_	_	I11	Q11	I11
15	_	_	24V	L2+	12	_	_	24V_1	L12+	I12
16	_	_	IO	Q0	I3	_	_	I10	Q10	I13
17	_	_	_	_	I4	_	_	_	_	I14
18	_	_	_	_	I5	_	_	_	_	I15
19	_	_	_	_	I6	_	_	_	_	I16
20	_	_	_	_	I7	_	_	_	_	I17
21	_	_	_	_	24V	_	_	_	_	24V_1
22	_	_	_	_	24V	_	_	_	_	24V_1
23	_	_	_	_	OV	_	_	_	_	0V_1
24	_	_	_	_	0V	_	_	_	_	0V_1

15 19" Modul AS-Interface

Schraubklemmen für zwei ASI Stränge ASI+, ASI-Schraubklemmen für 24V DC Versorgung (0 V, 24 V) und Schutzleiter (SL)

15.1 Aufbau und Funktion

Das 19" Modul AS-Interface erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Durch sein integriertes AS-Interface-Filter ermöglicht es in Verbindung mit einer entsprechenden AS-Interface Steuerungsbaugruppe den direkten Anschluss von AS-Interface Komponenten über die zwei M12 AS-Interface Buchsen.

Das Modul versorgt die AS-Interface Steuerungsbaugruppe und führt die AS-Interface Leitung über zwei M12 AS-Interface Buchsen nach außen.

Hinweis

Die Anwendung des 19" Moduls AS-Interface ist nur im Bereich der Ausbildung zugelassen.

15.2 In Betrieb nehmen

- 1. Verbinden Sie die Schaubklemmen 0 V bzw. 24 V mit Hilfe der blauen bzw. roten Leitung über Ringkabelschuhe und Aderendhülsen mit der Spannungsversorgungsbaugruppe des EduTrainers.
- 2. Verbinden Sie die Schutzleiterschraubklemme über die grün/gelbe Leitung (Ringkabelschuh und Aderendhülse) mit dem Schutzleiteranschluss der EduTrainer Gehäuses.
- 3. Verbinden Sie die freien ASI+ und ASI- Schraubklemmen über die gelbe AS-Interface Leitung (Aderendhülsen) mit den ASI+ und ASI- Anschlüssen der AS-Interface Steuerungsbaugruppe.
- 4. Schrauben Sie das 19" Modul in den Rahmen.

15.3 Technische Daten

Elektrik/Mechanik		
Betriebsspannung	24 V DC ± 3%	
AS-Interface Spannung	24 V DC ± 3%	
Anschluss	M12 AS-Interface Buchse	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		

15.4 Kontaktbelegungstabelle

Pin	M12 x 1		
1	ASI+		
2			
3	ASI-		
4			

16 19" Modul 24 V/0 V

16.1 Aufbau und Funktion

Das 19" Modul 24 V/0 V erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es hat acht 24 V Ausgänge auf 4 mm Sicherheitssteckbuchsen und acht 0 V Ausgänge auf 4 mm Sicherheitssteckbuchsen.

16.2 In Betrieb nehmen

- 1. Verbinden Sie die 24V Spannungsversorgung durch die 1-polige Klemme.
- 2. Verbinden Sie die OV Spannungsversorgung durch die 1-polige Klemme.
- 3. Schrauben Sie das 19" Modul in den Rahmen.

Elektrik/Mechanik	
Betriebsspannung	24 V DC 0 V DC
Anschluss	4 mm Sicherheitssteckbuchsen
Frontplattenbreite	9 TE
Änderungen vorbehalten	

17 19" Modul 24 V

17.1 Aufbau und Funktion

Das 19" Modul 24 V erweitert den Funktionsumfang Ihres SPS EduTrainer® Systems. Es hat acht 24 V Ausgänge auf 4 mm Sicherheitssteckbuchsen.

17.2 In Betrieb nehmen

- 1. Verbinden Sie die 24 V Spannungsversorgung durch die 1-polige Klemme.
- 2. Schrauben Sie das 19" Modul in den Rahmen.

Elektrik/Mechanik	
Betriebsspannung	24 V DC ± 3%
Ausgangsstrom	max. 4,0 A
Anschluss	4 mm Sicherheitssteckbuchsen
Frontplattenbreite	6 TE
Änderungen vorbehalten	

18 19" Modul 0 V

18.1 Aufbau und Funktion

Das 19" Modul 0 V erweitert den Funktionsumfang Ihres SPS EduTrainer $^{\odot}$ Systems. Es hat acht 0 V Ausgänge auf 4 mm Sicherheitssteckbuchsen.

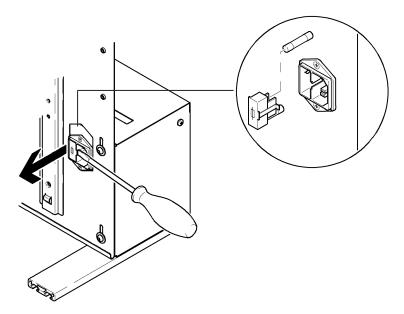
18.2 In Betrieb nehmen

- 1. Verbinden Sie die 0 V Spannungsversorgung durch die 1-polige Klemme.
- 2. Schrauben Sie das 19" Modul in den Rahmen.

Elektrik/Mechanik		
Betriebsspannung	0 V DC	
Anschluss	4 mm Sicherheitssteckbuchsen	
Frontplattenbreite	6 TE	
Änderungen vorbehalten		

19 19" Leerplatten

Mit den 19" Leerplatten werden nicht benutzte Einschubplätze abgedeckt. Die Leerplatten sind in den Breiten 3 TE, 6 TE, 9 TE, 12 TE, 18 TE und 42 TE erhältlich.


20 Wartung und Pflege

20.1 Reinigung

Reinigen Sie das Gehäuse bei Bedarf mit einem sauberen, trockenen Tuch.

20.2 Sicherungswechsel

- 1. Öffnen Sie die Sicherungsschublade auf der Gehäuse-Rückseite.
- 2. Ersetzen Sie die defekte Glassicherung durch eine Ersatz-Sicherung (3,15 A / träge /250 V).

21 Entsorgung

Elektronische Altgeräte sind Wertstoffe und gehören nicht in den Hausmüll. Die Entsorgung erfolgt über die kommunalen Sammelstellen.

Festo Didactic SE

Rechbergstraße 3 73770 Denkendorf Deutschland

+49 711 3467-0

+49 711 34754-88500

www.festo-didactic.com

did@festo.com