Cushioning components

- Adjustable or self-adjusting
- With linear or progressive characteristic
- Stop elements: combination of cushioning and end-position sensing
- Specified types in accordance with ATEX directive for potentially explosive atmospheres
 - → www.festo.com/en/ex

-O- New **DYSR and DYHR**

Cushioning componentsProduct range overview

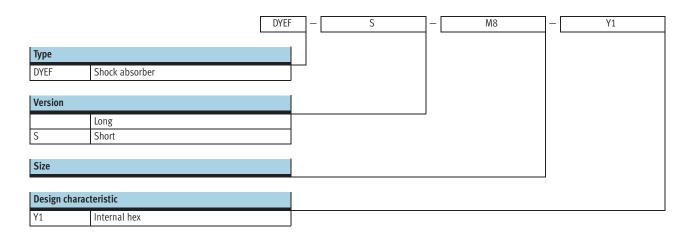
Function	Туре	Version	Brief description	Area of application
Shock	Elastome	r absorber		
absorber	DYEF-Y1		Mechanical shock absorber with flexible rubber buffer	Mini slide DGSL
		S. W.	Cushioning stroke cannot be adjusted	
		C. Diene	No fixed stop	
			Continuous mounting thread with internal hex	
	DYEF-Y1F		Mechanical shock absorber with flexible rubber buffer	Mini slide DGSL
			Cushioning stroke can be adjusted	 Swivel module DSM-B
		(O)	With fixed stop	 Semi-rotary drive DRQD-B
			Continuous mounting thread with internal hex	
	Adjustab	0		
	DYSR	le o	Hydraulic shock absorber with spring return	
	אכזע		Adjustable cushioning hardness	_
		0.	Adjustable cushioning naturess	
	Self-adju	sting		
	YSR-C		Hydraulic shock absorber with path-controlled flow control function	Linear drive DGPL
		-5	Rapidly increasing cushioning force curve	Linear drive DGC
		1000	Short cushioning stroke	Linear unit SLE
			Suitable for rotary drives	
			Maintenance-free	
			Continuous mounting thread	
	DYSC		Hydraulic shock absorber with path-controlled flow control function	Swivel module DSM-B
		The state of the s	Rapidly increasing cushioning force curve	Swivel/linear unit DSL-B
		Cape .	Short cushioning stroke	
			Suitable for rotary drives	
			Maintenance-free	
			Metal end position at the housing	
			Continuous mounting thread with internal hex	
	YSRW		Hydraulic shock absorber with path-controlled flow control function	Linear drive DGC
			Slowly increasing cushioning force curve	 Linear module HMP,
		19	Long cushioning stroke	HMPL
			Suitable for low-vibration operation	 Handling module HSP,
			Short cycle times possible	HSW
			Maintenance-free	
			Continuous mounting thread with spanner flat	
	DYSW		Hydraulic shock absorber with path-controlled flow control function	Mini slide DGSL
			 Slowly increasing cushioning force curve 	 Handling module HSW
		0	Long cushioning stroke	
			Suitable for low-vibration operation	
			Short cycle times possible	
			Maintenance-free	
			Metal end position at the housing	
			Continuous mounting thread with internal hex	

Cushioning componentsProduct range overview

[mm] [J] Elastomer absorber M4, M5, M6, M8, M10, M12, M14, M16 M4, M5, M6, M8, M10, M12, M14, M16, M22 Adjustable [mm] [J] In the content of the conte	-	silicone	7
M4, M5, M6, M8, M10, 0.9, 1.0, 1.2, 1.3, 1.5 0.015 M12, M14, M16 1.7, 2.8, 3.1, 3.4, 3.7, 0.005 M4, M5, M6, M8, M10, 1.7, 2.8, 3.1, 3.4, 3.7, 0.005 M12, M14, M16, M22 4.2, 5, 4.8, 7 0.005	-	•	7
M12, M14, M16 M4, M5, M6, M8, M10,	-	•	7
M4, M5, M6, M8, M10, 1.7, 2.8, 3.1, 3.4, 3.7, 0.005 M12, M14, M16, M22 4.2, 5, 4.8, 7	1.2	•	
M12, M14, M16, M22 4.2, 5, 4.8, 7	1.2		
M12, M14, M16, M22 4.2, 5, 4.8, 7	1.2		
M12, M14, M16, M22 4.2, 5, 4.8, 7			10
Adjustable		_	
Adjustable	-	•	
Adjustable			
8, 12, 16, 20, 25, 32 8, 12, 20, 25, 40, 60 4 384			14
	-	-	
Self-adjusting	0		18
4, 5, 7, 8, 10, 12, 16, 20, 4, 5, 8, 10, 12, 20, 25, 0.6 38 25, 32 40, 60	0		18
25, 52		•	
	-	Size	
		4 20	
4, 5, 7, 8, 12, 16 4, 5, 8, 12, 18 0.6 25			22
	_	•	
5, 7, 8, 10, 12, 16, 20 8, 10, 14, 17, 20, 26, 34 1.3 70			26
0, 10, 14, 17, 20, 20, 34			
	_		
4, 5, 7, 8, 10, 12 6, 8, 10, 14, 17, 20 0.8 12			30
	-	•	
		1	I

-O- New **DYSR and DYHR**

Cushioning componentsProduct range overview


Function	Туре	Version	Brief description	Area of application
Stop	Self-adjust	ing		
element	YSRWJ		Cushioning with self-adjusting, progressive hydraulic shock absorber (YSRW) Slowly increasing cushioning force curve Adjustable cushioning stroke End-position sensing with proximity sensors SME/SMT-8 Precision end-position adjustment Stop elements YSRWJ can be used for a wide variety of applications in handling and assembly technology	Linear module HMPL
Hydraulic	Adjustable			
cushioning cylinder	DYHR		Hydraulic cushioning cylinder for constant, slow braking speeds across the entire stroke Braking speed can be precisely adjusted A built-in compression spring returns the piston rod to the initial position Suitable for slow feed speeds in the range up to 0.1 m/s	_

Cushioning componentsProduct range overview

Size	Stroke	per stroke	Position sensing	Free of copper, PTFE and silicone	→ Page/Internet
	[mm]	U)			
Self-adjusting					
5, 7, 8	8, 10, 14	1 3			34
			•	-	
Adjustable					
16, 20, 25, 32	20, 25, 40, 50, 60	32 384			38
			-	-	

Shock absorbers DYEF- ... -Y1, without fixed stop Type codes

Shock absorbers DYEF-...-Y1, without fixed stop

FESTO

Technical data

-N- Size

M4 ... M16

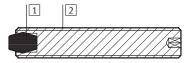
-T- Stroke length 0.9 ... 1.5 mm

General technical data											
Size			M4	M5	M6	M8	M10	M12	M14	M16	
Stroke		[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3	
Mode of operation			Elastomer cu	Elastomer cushioning without metal fixed stop							
Cushioning	Not adjustat	Not adjustable									
Cushioning length [mm]		0.9	1.5	1.5	1.3	1	1.2	1.2	1.3		
Type of mounting	Via lock nut	Via lock nut									
Max. impact velocity		[m/s]	0.8	0.8							
Mounting position			Any								
Product weight		[g]	2.1	3.6	6	14	23	45.5	82.5	106	
	S	[g]	1.1	2	3	8.6	12	15	31	40	
Ambient temperature		[°C]	0 +60		•			•	•	•	
Corrosion resistance class CRC ¹⁾			2	2							

¹⁾ Corrosion resistance class 2 according to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

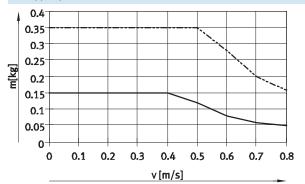
Energy [J]								
Size	M4	M5	M6	M8	M10	M12	M14	M16
Max. energy absorption per stroke	0.015	0.05	0.08	0.12	0.25	0.35	0.45	0.55

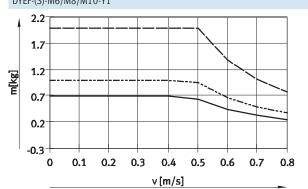
Mass range [kg]										
Size	M4	M5	M6	M8	M10	M12	M14	M16		
Mass range up to	0.15	0.35	0.7	1	2	3	5	7		


Shock absorbers DYEF-...-Y1, without fixed stop

Technical data

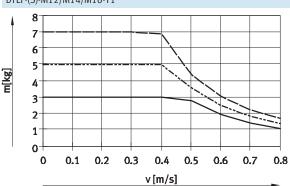
Materials


Sectional view


Shock	absorber	
1	Buffer	Nitrile rubber
2	Housing	High-alloy steel
-	Seals	Nitrile rubber
	Note on materials	Free of copper, PTFE and silicone
		RoHS-compliant

Impact velocity dependent on mass m

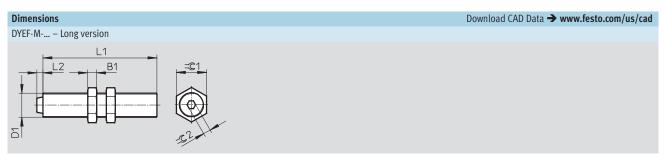
DYEF-(S)-M4/M5-Y1

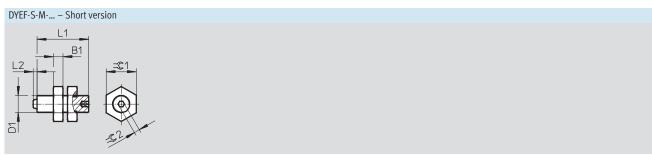


DYEF-(S-)M4-Y1
DYEF-(S-)M5-Y1

DYEF-(S-)M6-Y1
DYEF-(S-)M8-Y1
DYEF-(S-)M10-Y1

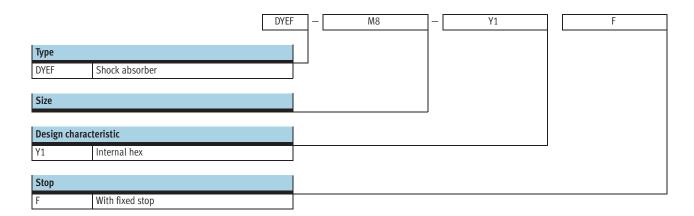
DYEF-(S)-M12/M14/M16-Y1




DYEF-(S-)M12-Y1
DYEF-(S-)M14-Y1

——— DYEF-(S-)M16-Y1

Shock absorbers DYEF-...-Y1, without fixed stop Technical data



Size	B1	D1	L		L2	=©1	= ©2	Max. tightening torque =€1
			DYEF-M	DYEF-S-M				
					+0.3			[Nm]
M4	2.2	M4x0.5	22	12	0.9	7	1.3	0.5
M5	2.7	M5x0.5	26	14.5	1.8	8	1.5	0.8
M6	2.5	M6x0.5	30	15	1.8	8	2	1
M8	3	M8x1	38	23.5	2	10	2.5	2
M10	3.5	M10x1	41	21	1.8	13	3	3
M12	4	M12x1	54	20	2	15	4	5
M14	5	M14x1	72	28	2	17	4	8
M16	5	M16x1	75	31.5	2	19	5	20

Ordering d	lata	
Size	Part No.	Туре
DYEF-M	– Long version	
M4	1179810	DYEF-M4-Y1
M5	1179818	DYEF-M5-Y1
M6	1179831	DYEF-M6-Y1
M8	1179834	DYEF-M8-Y1
M10	1179837	DYEF-M10-Y1
M12	1179840	DYEF-M12-Y1
M14	1179863	DYEF-M14-Y1
M16	1179879	DYEF-M16-Y1
	– Short version	
M4	1152500	DYEF-S-M4-Y1
M5	1152507	DYEF-S-M5-Y1
M6	1152524	DYEF-S-M6-Y1
M8	1152536	DYEF-S-M8-Y1
M10	1152959	DYEF-S-M10-Y1
M12	1153004	DYEF-S-M12-Y1
M14	1153017	DYEF-S-M14-Y1
M16	1153023	DYEF-S-M16-Y1

Shock absorbers DYEF- ... -Y1F, with fixed stop Type codes

Shock absorbers DYEF- ... -Y1F, with fixed stop

FESTO

Technical data

-N- Size

M4 ... M22

-T- Stroke length 1.7 ... 7 mm

General technical data										
Size		M4	M5	M6	M8	M10	M12	M14	M16	M22
Stroke	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Mode of operation	Elastomer cushioning with metal fixed stop									
Cushioning		Adjustable								
Cushioning length	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Type of mounting		Via lock nut								
Max. impact velocity	[m/s]	0.8								
Mounting position		Any								
Product weight	[g]	1.6	2.9	5.1	11.9	19.7	39.6	77.3	104	200
Ambient temperature	[°C]	0 +60								
Corrosion resistance class CRC ¹⁾		2								
ATEX Specified types → www.festo.com										

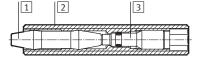
1) Corrosion resistance class 2 according to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Force [N]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Min. insertion force ¹⁾	15	30	40	60	70	100	150	180	500

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly in the event of an extended external end position or a reduction in the cushioning stroke.

Energy [J]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Max. energy absorption per stroke	0.005	0.02	0.03	0.04	0.06	0.12	0.2	0.25	1.2

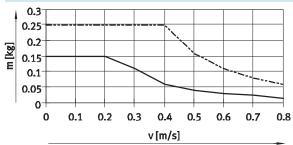
Mass range [kg]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Mass range up to	0.15	0.25	0.4	0.6	1.2	1.8	3	5	15

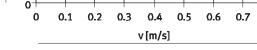

Shock absorbers DYEF-...-Y1F, with fixed stop

FESTO

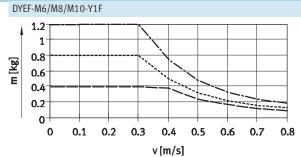
Technical data

Materials

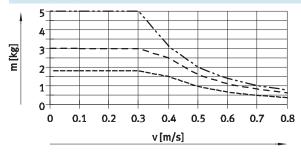

Sectional view

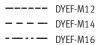


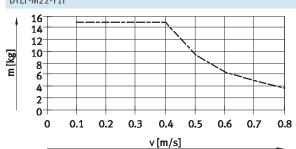
Shock	Shock absorber						
1	Buffer	Nitrile rubber					
2	Adjustable sleeve	Stainless steel					
3	Setting piece	Stainless steel					
-	Seals	Nitrile rubber					
	Note on materials	Free of copper, PTFE and silicone					
		RoHS-compliant					


Impact velocity as a function of mass m

DYEF-M4/M5-Y1F







DYEF-M12/M14/M16-Y1F

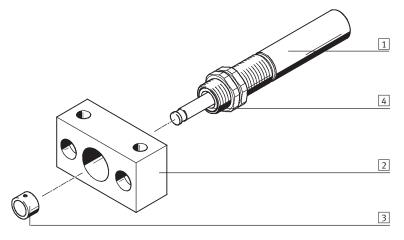
DYEF-M22-Y1F

———— DYEF-M22

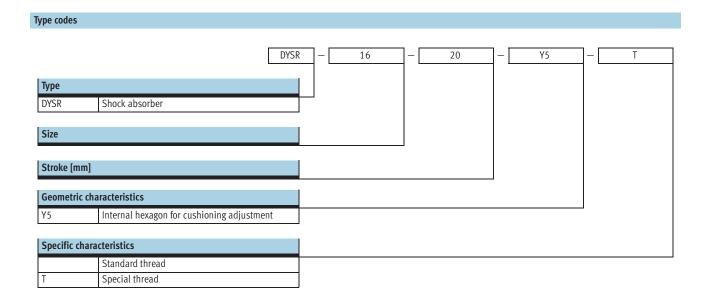
Shock absorbers DYEF- ... -Y1F, with fixed stop Technical data

Size	B1	D1	L1	L2	=©1	=©2	=©3	Max. tightening torque =©1
				+0.3				[Nm]
M4	2.2	M4x0.5	22	1.7	7	1.3	2.5	0.5
M5	2.7	M5x0.5	26	2.8	8	1.5	3	0.8
M6	2.5	M6x0.5	30	3.1	8	2	4	1
M8	3	M8x1	38	3.4	10	2.5	5	2
M10	3.5	M10x1	41	3.7	13	3	6	3
M12	4	M12x1	54	4.2	15	4	8	5
M14	5	M14x1	72	5	17	4	8	8
M16	5	M16x1	75	4.8	19	5	10	20
M22	5	M22x1.5	78	7	27	5	10	35

Ordering	Ordering data							
Size	Part No.	Туре						
M4	548370	DYEF-M4-Y1F ¹⁾						
M5	548371	DYEF-M5-Y1F						
M6	548372	DYEF-M6-Y1F						
M8	548373	DYEF-M8-Y1F						
M10	548374	DYEF-M10-Y1F						
M12	548375	DYEF-M12-Y1F						
M14	548376	DYEF-M14-Y1F						
M16	548377	DYEF-M16-Y1F						
M22	1113706	DYEF-M22-Y1F						

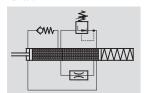

¹⁾ The scope of delivery for this size includes an Allen key.

FESTO


Peripherals overview and type codes

Peripherals overview

Access	Accessories									
	Туре	Brief description	→ Page/Internet							
1	Shock absorber DYSR	Hydraulic shock absorber with adjustable cushioning characteristics	15							
2	Mounting flange YSRF	Mounting option for shock absorber	42							
3	Buffer YSRP	For protecting the piston rod	44							
4	Wiper seal ¹⁾ ; hardened piston rod ²⁾	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	_							


- As of size 12
 As of size 16

FESTO

Technical data

Function

- -N- Size 8 ... 32 -T- Stroke lengt
- Stroke length 8 ... 60 mm

General technical data							
Size		8	12	16	20	25	32
Stroke	[mm]	8	12	20	25	40	60
Mode of operation		Hydraulic shock at	sorber with spring	return			
		Single acting, push	ning				
Cushioning		Adjustable, force-dependent, hard characteristic curve					
Cushioning length	[mm]	8	12	20	25	40	60
Type of mounting		Via lock nut					
Impact velocity	[m/s]	0.1 3					
Mounting position		Any					
Product weight	[g]	60	105/120 ¹⁾	200/250 ¹⁾	355/425 ¹⁾	715	1,355
Ambient temperature	[°C]	-10 +80					
Corrosion resistance class	CRC ²⁾	1					

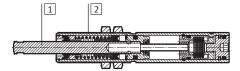
- 1) Applies to shock absorbers with special thread T $\,$
- 2) Corrosion resistance class 1 according to Festo standard 940 070 Components subject to low corrosion stress. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Reset time [s]						
Size	8	12	16	20	25	32
Reset time ¹⁾	≤ 0.2		≤ 0.3		≤ 0.4	≤ 0.6

1) The specified technical data refers to ambient temperature. At -10 °C, the reset time can be up to 1 s for sizes 12, 16 and up to 3 s for sizes 8, 20, 25, 32

Force [N]								
Size	8	12	16	20	25	32		
Min. insertion force ¹⁾	18	38	66	110	155	175		
Max. stop force ²⁾ in the end positions	400	900	1,600	2,500	4,000	6,400		
Min. resetting force ³⁾	1.8	4.5	5.4	9	12.5	18		

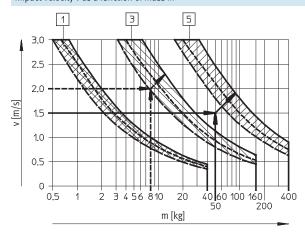
- 1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly with an extended external end position
- 2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke
- 3) This is the maximum force that can act on the piston rod, allowing for full extension of the shock absorber (e.g. protruding bolt)

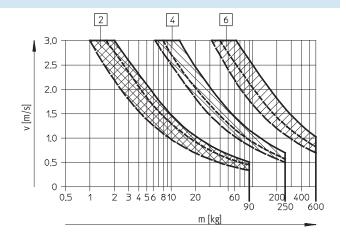

Energy [J]								
Size	8	12	16	20	25	32		
Max. energy absorption per stroke	4	10.8	32	62.5	160	384		
Max. energy absorption per hour	24,000	60,000	100,000	135,000	220,000	330,000		
Max. residual energy	0.01	0.05	0.16	0.32	0.8	2		

FESTO

Technical data

Materials

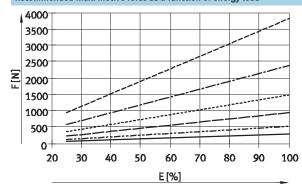

Sectional view



Size		8	12	16	20	25	32	
1	Piston rod	High-alloy steel, ha	High-alloy steel, hardened					
2	Housing	Nickel-plated brass Galvanised steel						
-	Buffer	Polyacetal	_					
-	Seals	Nitrile rubber						
	Note on materials	RoHS-compliant						

Selection graph for shock absorbers with infinitely adjustable cushioning DYSR

Impact velocity v as a function of mass m

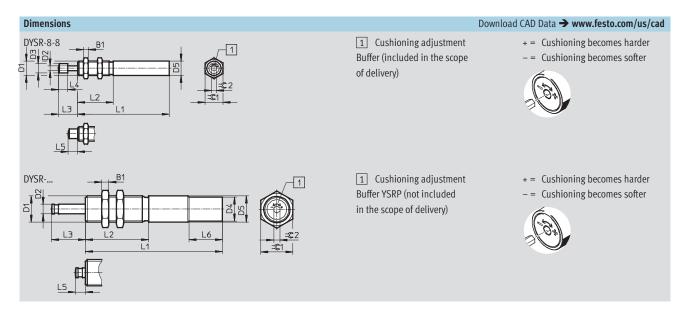

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

The arrows relate to the examples starting on page 48.

- 1 DYSR-8-8
- 4 DYSR-20-25
- DYSR-12-12DYSR-16-20
- 5 DYSR-25-40
- 6 DYSR-32-60

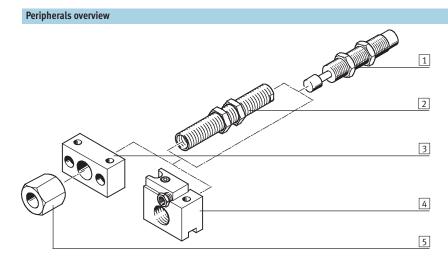
Shock absorber	Force A =	Force A =	Force A =
DYSR-8-8	0 N	100 N	200 N
DYSR-12-12	0 N	200 N	500 N
DYSR-16-20	0 N	500 N	800 N
DYSR-20-25	0 N	800 N	1,200 N
DYSR-25-40	0 N	1,200 N	2,000 N
DYSR-32-60	0 N	2,000 N	3,000 N

Recommended max. motive force as a function of energy load

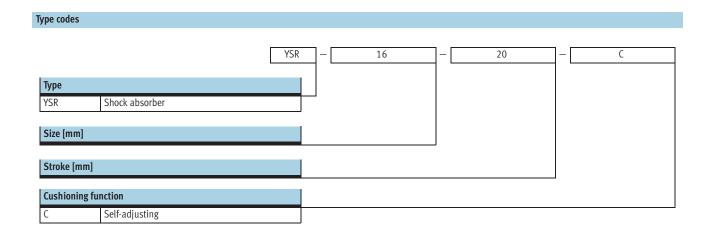


 DYSR-8-8-Y5
 DYSR-12-12-Y5
 DYSR-16-20-Y5
 DYSR-20-25-Y5
 DYSR-25-40-Y5
 DYSR-32-60-Y5

Technical data

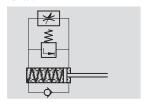


Туре	B1	D1	D2 Ø	D3 ∅ ±0.2	D4 ∅ +0.15	D5 ∅ +0.15/-0.1	L1	L2
				±0.2	+0.15	+0.15/-0.1		±0.1
DYSR-8-8-Y5	4	M12x1	4	8	-	12	77±0.1	30
DYSR-12-12-Y5	5	M15x1	6	_		15	97±0.1	36
DYSR-12-12-Y5-T	, ,	M16x1	0	_	_	16	9/±0.1	50
DYSR-16-20-Y5	- 6	M20x1.25	8	-	-	20	115±0.1	
DYSR-16-20-Y5-T	0	M22x1.5	٥		20	22	110±0.1	53
DYSR-20-25-Y5	. 8	M24x1.25	10	-	-	24	138±0.1	60
DYSR-20-25-Y5-T	0	M26x1.5	10		24	26	1 30±0.1	60
DYSR-25-40-Y5	10	M30x1.5	12	-	28.8	30	178±0.1	80
DYSR-32-60-Y5	12	M37x1.5	15	-	34.8	37	230±0.15	108


Туре	L3	L4	L5	L6	=©1	=©2	Max. tightening torque =©1
		±0.2		±0.2			[Nm]
DYSR-8-8-Y5	16.2+0.6/-0.45	8	8+0.5/-0.35	-	15	4	5
DYSR-12-12-Y5	19 / 025/ 02		6.4+0.45/-0.4	-	19	г	20
DYSR-12-12-Y5-T	18.4+0.35/-0.2	_	0.4+0.45/-0.4		19	5	20
DYSR-16-20-Y5	28.5+0.4/-0.3	_	8.5+0.45/-0.4	-	24	5	35
DYSR-16-20-Y5-T	20.5+0.4/-0.3	_	0.0+0.45/-0.4	28	27	5	55
DYSR-20-25-Y5	25 6 0 1/ 0 2		10 6 0 (5) 0 (-	30	5	60
DYSR-20-25-Y5-T	35.6+0.4/-0.3	-	10.6+0.45/-0.4	28	32	5	60
DYSR-25-40-Y5	52.8+0.4/-0.3	_	12.8+0.45/-0.4	28	36	6	80
DYSR-32-60-Y5	76+0.5/-0.4	-	16+0.5/-0.4	28	46	6	100

Ordering da	ata	
Size	Part No.	Туре
8	1138641	DYSR-8-8-Y5
12	1138642	DYSR-12-12-Y5
	1138643	DYSR-12-12-Y5-T
16	1138644	DYSR-16-20-Y5
	1138645	DYSR-16-20-Y5-T
20	1138646	DYSR-20-25-Y5
	1138647	DYSR-20-25-Y5-T
25	1138648	DYSR-25-40-Y5
32	1138649	DYSR-32-60-Y5

Peripherals overview and type codes


Access	sories		
	Туре	Brief description	→ Page/Internet
1	Shock absorber YSR-C	Hydraulic shock absorber with rapidly increasing cushioning force curve	19
2	Reducing sleeve DAYH	To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve	45
3	Mounting flange YSRF	Mounting option for shock absorber	42
4	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	43
5	Stop limiters YSRA	Stroke limiter for shock absorber	44
	Inductive proximity sensor SIEN	For mounting flange YSRF-S	45

FESTO

Technical data

Function

-N- Size

4 ... 32 mm

-T- Stroke length

4 ... 60 mm

General technical data											
Size		4	5	7	8	10	12	16	20	25	32
Stroke	[mm]	4	5	5	8	10	12	20	25	40	60
Mode of operation		Hydraulic	shock absorl	pers with re	eturn spring	5	•	•		•	
		Single acti	ing, pushing								
Cushioning		Self-adjus	table								
Cushioning length	[mm]	4	5	5	8	10	12	20	25	40	60
Type of mounting		With lockn	iut								
Impact velocity	[m/s]	0.05 2		0.05 3	3						
Mounting position		Any									
Product weight	[g]	5	8	16	32	51	74	185	318	600	1220
Ambient temperature	[°C]	-10 +80	0	•	•				•		•
Corrosion resistance class	CRC ¹⁾	2									

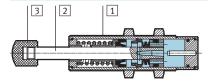
1) Corrosion resistance class 2 to Festo standard 940 070
Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Reset time [s]										
Size	4	5	7	8	10	12	16	20	25	32
Reset time ¹⁾	≤ 0.2						≤ 0.3		≤ 0.4	≤ 0.5

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]										
Size	4	5	7	8	10	12	16	20	25	32
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35	60	100	140	160
Max. stop force ²⁾ in end positions	100	200	300	500	700	1,000	2,000	3,000	4,000	6,000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5	6	10	14	20

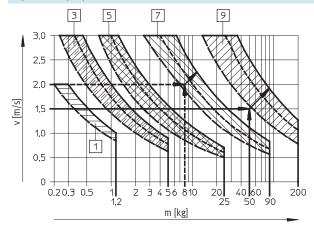
- 1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position
- 2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke
- 3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

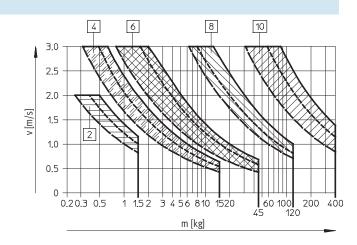

Energies [J]											
Size	4	5	7	8	10	12	16	20	25	32	
Max. energy absorption per stroke	0.6	1	2	3	6	10	30	60	160	380	
Max. energy absorption per hour	5,600	8,000	12,000	18,000	26,000	36,000	64,000	92,000	150,000	220,000	
Max. residual energy	0.006	0.01		0.02	0.03	0.05	0.16	0.32	0.8	2	

Mass range [kg]										
Size	4	5	7	8	10	12	16	20	25	32
Permissible mass range up to	1.2	1.5	5	15	25	45	90	120	200	400

Technical data

Materials

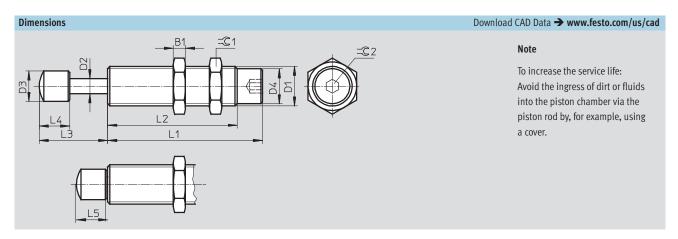

Sectional view



Piston	Ø	4	5	7	8	10	12	16	20	25	32	
1	Housing	Brass, nick	Brass, nickel-plated Ga				Galvanised steel					
2	Piston rod	High-alloy	High-alloy steel									
3	Buffer	Polyamide	Polyamide						Steel with			
			polyu						polyuretha	ne		
-	Seals	Nitrile rubl	oer, polyure	thane								
-	Note on materials	Free of copper, PTFE and silicone –										
		Conforms to RoHS						•				

Selection graph for self-adjusting shock absorbers YSR-C

Impact velocity dependent on mass m

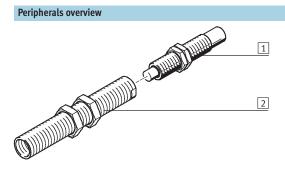

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. The

arrows relate to the examples starting on page \rightarrow 49.

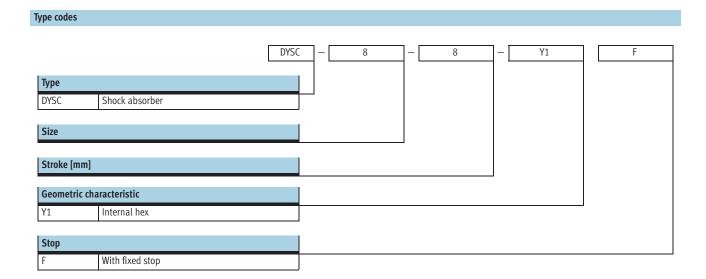
- 1 YSR-4-4-C 2 YSR-5-5-C
- 5 YSR-12-12-C 6 YSR-16-20-C
- 2 YSR-7-5-C
- 7 YSR-20-25-C
- 3 YSR-8-8-C
- 8 YSR-25-40-C
- 4 YSR-10-10-C
- 10 YSR-32-60-C

Shock absorber	Force A =	Force A =	Force A =
YSR-4-4-C	0 N	-	50 N
YSR-5-5-C	0 N	50 N	100 N
YSR-7-5-C	0 N	100 N	200 N
YSR-8-8-C	0 N	100 N	200 N
YSR-10-10-C	0 N	150 N	300 N
YSR-12-12-C	0 N	200 N	500 N
YSR-16-20-C	0 N	500 N	800 N
YSR-20-25-C	0 N	800 N	1,200 N
YSR-25-40-C	0 N	1,200 N	2,500 N
YSR-32-60-C	0 N	2,000 N	4,000 N

Technical data

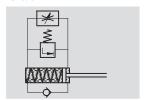

Size	B1	D1	D2 Ø	D3 Ø	D4 ∅	L1
[mm]						±0.1
4	2,5	M6x0,5	2	3,8 ±0,1	5,3 ±0,05	28,5
5	3	M8x1	2.5	5 ±0.1	6.7 ±0.05	29
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	34
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	46
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	55
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	64
16	6	M22x1.5	8	16 ±0.2	19,6 ±0.1	86
20	8	M26x1.5	10	20 ±0.2	23,8 ±0.1	104
25	10	M30x1.5	12	25 ±0.2	27,8 ±0.1	152
32	12	M37x1.5	15	32 ±0.2	34,8 ±0.1	205

Size	L2	L3	L4	L5	= ©1	=©2	Max. tightening torque ∹© 1 [Nm]
[mm]	±0.3						
4	18,5	8,3 +0,6/-0,3	4 ±0,1	4,3 +0,35/-0,25	8	2	1
5	19	10.8 +0.6/-0.3	5.5 ±0.1	5.8 +0.55/-0.25	10		2
7	23	12.3 +0.7/-0.35	7 ±0.2	7.3 +0.55/-0.25	13		3
8	33	16.3 +0.7/-0.35	8 ±0.2	8.3 +0.55/-0.25	15		5
10	42	20.5 +0.7/-0.35	10 ±0.2	10.5 +0.55/-0.25	17		8
12	51	24.5 +0.7/-0.35	12 ±0.2	12.5 +0.55/-0.25	19	-	20
16	69	36.5 +0.7/-0.35	16 ±0.2	16.5 +0.55/-0.25	27		35
20	87	45.5 +0.7/-0.35	20 ±0.2	20.5 +0.55/-0.25	32		60
25	125	61.5 +1.25/-0.75	20.5 ±0.4	21.5 +0.95/-0.55	36		80
32	179	87 +1.25/-0.75	26 ±0.4	27 +0.95/-0.55	46		100


Ordering o	lata	
Size	Part No.	Туре
[mm]		
4	540060	YSR-4-4-C ¹⁾
5	158981	YSR-5-5-C ¹⁾
7	160272	YSR-7-5-C ¹⁾
8	34571	YSR-8-8-C ¹⁾
10	191199	YSR-10-10-C ¹⁾
12	34572	YSR-12-12-C ¹⁾
16	34573	YSR-16-20-C ¹⁾
20	34574	YSR-20-25-C ¹⁾
25	160273	YSR-25-40-C
32	160274	YSR-32-60-C

¹⁾ Free of copper, PTFE and silicone

Peripherals overview and type codes


Access	Accessories							
	Туре	Brief description	→ Page/Internet					
1	Shock absorber DYSC	Hydraulic shock absorber with rapidly increasing cushioning force curve	23					
2	Reducing sleeve DAYH	To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve	45					

FESTO

Technical data

Function

- -N- Size
 - 4 ... 16
- -T- Stroke length

General technical data							
Size		4	5	7	8	12	16
Stroke	[mm]	4	5	5	8	12	18
Mode of operation		Hydraulic shock at	sorber with spring	return			
		Single acting, push	ning				
Cushioning	Cushioning Self-adjusting, hard characteristic curve						
Cushioning length	[mm]	4	5	5	8	12	18
Type of mounting		With lock nut					
Impact velocity	[m/s]	0.05 2		0.05 3			
Mounting position		Any					
Product weight	[g]	5	9	17	36	81	210
Ambient temperature	[°C]	-10 +80	•	•	•	•	•
Corrosion resistance class CRC ¹⁾ 2							

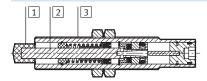
1) Corrosion resistance class 2 to Festo standard 940 070
Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Reset time [s]						
Size	4	5	7	8	12	16
Reset time ¹⁾	≤ 0.2					≤ 0.3

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]								
Size	4	5	7	8	12	16		
Min. insertion force ¹⁾	6.5	7.5	10	18	35	60		
Max. stop force ²⁾ in end positions	100	200	300	500	1,000	2,000		
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	5	6		

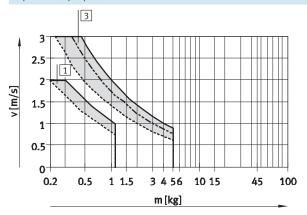
- 1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position
- 2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke
- 3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

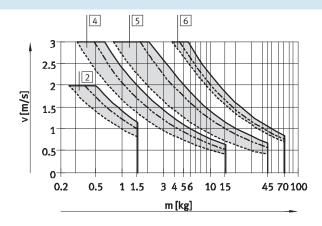

Energies [J]								
Size	4	5	7	8	12	16		
Max. energy absorption per stroke	0.6	1	2	3	10	25		
Max. energy absorption per hour	5,600	8,000	12,000	18,000	36,000	50,000		
Max. residual energy	0.006	0.01		0.02	0.05	0.16		

Mass range [kg]								
Size	4	5	7	8	12	16		
Mass range up to	1.2	1.5	5	15	45	70		

Technical data

Materials

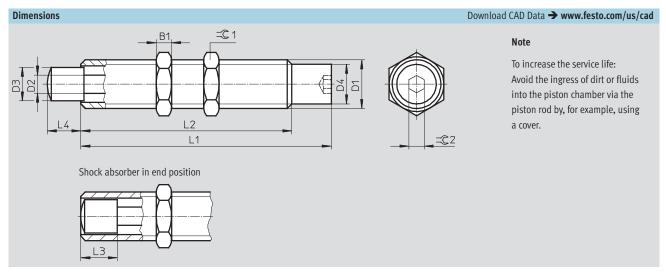

Sectional view



Size		4	5	7	8	12	16	
1	Buffer	Polyacetate						
2	Piston rod	High-alloy steel	ligh-alloy steel					
3	Housing	High-alloy steel Galvanised steel						
-	Seals	Nitrile rubber						
	Note on materials	Copper, PTFE and silicone-free						
		Conforms to RoHS						

Selection graph for self-adjusting shock absorbers DYSC

Impact velocity dependent on mass m

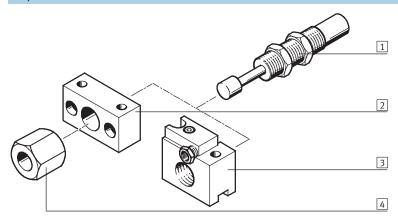

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

- 1 DYSC-4-4-Y1F
- 2 DYSC-5-5-Y1F
- 3 DYSC-7-5-Y1F
- 4 DYSC-8-8-Y1F
- 5 DYSC-12-12-Y1F
- 6 DYSC-16-18-Y1F

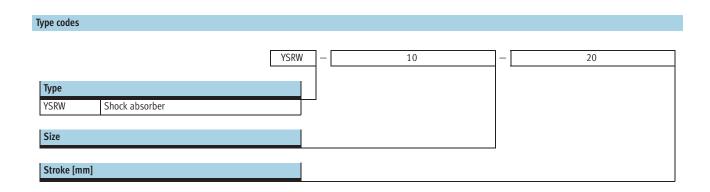
Shock absorber	Force A =	Force A =	Force A =
DYSC-4-4-Y1F	0 N	-	50 N
DYSC-5-5-Y1F	0 N	50 N	100 N
DYSC-7-5-Y1F	0 N	100 N	200 N
DYSC-8-8-Y1F	0 N	100 N	200 N
DYSC-12-12-Y1F	0 N	200 N	500 N
DYSC-16-18-Y1F	0 N	500 N	800 N

Technical data

Size	B1	D1	D2 Ø	D3 ∅	D4 ∅	L1	L2
[mm]						±0.1	+0.3/-0.2
4	2.5	M6x0.5	2	4 ±0.05	5.4 ±0.05	35.5	25.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	38.6	28.4
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	45.15	34.15
8	4	M12x1	4	7 ±0.1	10.4 ±0.1	59.05	46.05
12	5	M16x1	6	11 ±0.1	14.5 ±0.1	82.5	69.5
16	6	M22x1.5	8	15 ±0.1	19,6 ±0.1	110	93

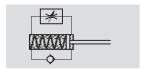

Size	L3 ¹⁾	L4	=©1	= ©2	Max. tightening torque =©1
[mm]					[Nm]
4	4	4 +0.30/-0.24	8	2	1
5	5.5	5 +0.32/-0.28	10	2.5	2
7	7	5 +0.37/-0.28	13	3	3
8	8	8 +0.42/-0.33	15	4	5
12	12	12 +0.50/-0.35	19	5	20
16	17	18 +0.50/-0.35	27	5	35

¹⁾ Buffer length


Ordering d	rdering data								
Size	Part No.	Туре							
[mm]									
4	570506	DYSC-4-4-Y1F							
5	548011	DYSC-5-5-Y1F							
7	548012	DYSC-7-5-Y1F							
8	548013	DYSC-8-8-Y1F							
12	548014	DYSC-12-12-Y1F							
16	553593	DYSC-16-18-Y1F							

Peripherals overview and type codes

Peripherals overview


Access	sories		
	Туре	Brief description	→ Page/Internet
1	Shock absorber YSRW	Hydraulic shock absorber with progressive cushioning characteristic	27
2	Mounting flange YSRF	Mounting option for shock absorber	42
3	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	43
4	Stop limiters YSRA	Stroke limiter for shock absorber	44
-	Inductive proximity sensor SIEN	For mounting flange YSRF-S	45

FESTO

Technical data

Function

-N- Size

5 ... 20 mm

-T- Stroke length

8 ... 34 mm

General technical data									
Size		5	7	8	10	12	16	20	
Stroke	[mm]	8	10	14	17	20	26	34	
Mode of operation		Hydraulic shock	absorbers with re	turn spring					
	Single acting, pushing								
Cushioning Self-adjustable									
Cushioning length	[mm]	8	10	14	17	20	26	34	
Type of mounting		With locknut							
Impact velocity	[m/s]	0.1 2	0.1 3						
Mounting position		Any							
Product weight	[g]	8	18	34	54	78	190	330	
Ambient temperature	Ambient temperature [°C] -10 +80								
Corrosion resistance class (CRC ¹⁾	2	2						

Corrosion resistance class 2 to Festo standard 940 070
 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

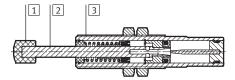
Reset time [s]							
Size	5	7	8	10	12	16	20
Reset time ¹⁾	≤ 0.2				≤ 0.3		

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]									
Size	5	7	8	10	12	16	20		
Min. insertion force ¹⁾	7.5	10	18	25	35	60	100		
Max. stop force ²⁾ in end positions	200	300	500	700	1,000	2,000	3,000		
Min. resetting force ³⁾	0.9	1.2	2.5	3.5	5	6	10		

- 1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position
- 2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke
- 3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

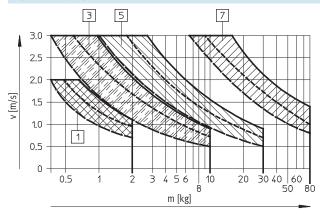
Energies [J]									
Size	5	7	8	10	12	16	20		
Max. energy absorption per stroke	1.3	2.5	4	8	12	35	70		
Max. energy absorption per hour	10,000	15,000	21,000	30,000	41,000	68,000	100,000		
Max. residual energy	0.01		0.02	0.03	0.05	0.16	0.32		

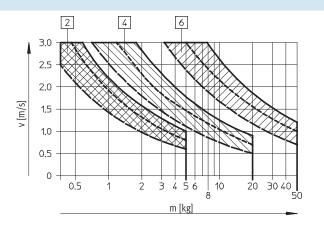

Mass range [kg]								
Size	5	7	8	10	12	16	20	
Permissible mass range up to	2	5	10	20	30	50	80	

FESTO

Technical data

Materials

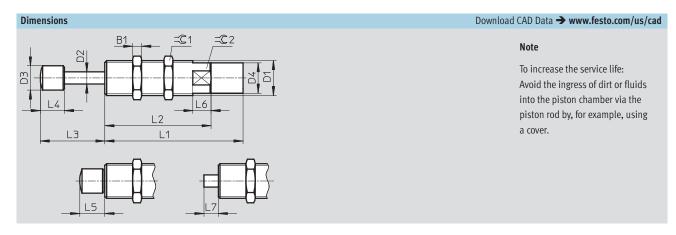

Sectional view



Size		5	7	8	10	12	16	20	
1	Buffer	Polyamide							
2	Piston rod	High-alloy steel							
3	Housing	Brass, nickel-plated			Galvanised steel				
-	Seals	Nitrile rubber							
	Note on materials	Free of copper, PTFE and silicone							
		Conforms to RoHS							

Selection graph for self-adjusting shock absorbers with progressive characteristics YSRW

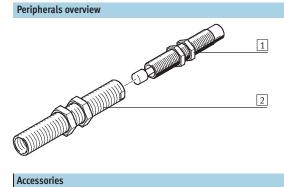
Impact velocity dependent on mass m


Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

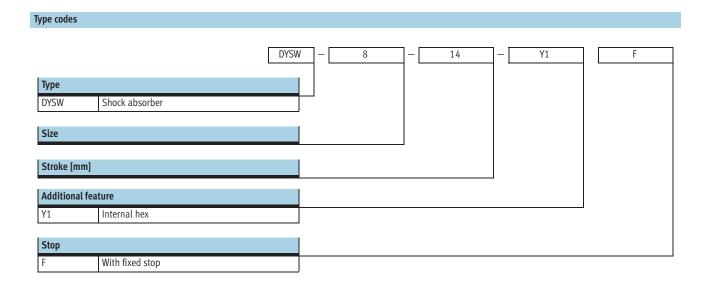
- 1 YSRW-5-8
- 2 YSRW-7-10
- 3 YSRW-8-14
- 4 YSRW-10-17
- 5 YSRW-12-20
- 6 YSRW-16-26
- 7 YSRW-20-34

Shock absorber	Force A =	Force A =	Force A =
YSRW-5-8	0 N	50 N	100 N
YSRW-7-10	0 N	75 N	150 N
YSRW-8-14	0 N	100 N	200 N
YSRW-10-17	0 N	150 N	300 N
YSRW-12-20	0 N	200 N	400 N
YSRW-16-26	0 N	500 N	800 N
YSRW-20-34	0 N	800 N	1,200 N

Technical data

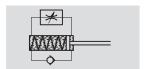


Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2	L3
[mm]						±0.1	±0.3	
5	3	M8x1	2.5	5 ±0.1	6.7 ±0.05	33.5	22.5	13.8 +0.6/-0.25
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	41	30	17.3 +0.7/-0.25
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	53	40	22.3 +0.7/-0.25
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	62	49	27.5 +0.7/-0.25
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	72.5	59.5	32.5 +0.7/-0.25
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	91	70	42.5 +0.7/-0.35
20	8	M26x1.5	10	20 ±0.2	24 ±0.1	112	91	54.5 +0.7/-0.35


Size	L4	L5	L6	L7	=©1	=©2	Max. tightening torque ∹©1
[mm]			+0.5				[Nm]
5	5.5 ±0.1	5.8 +0.35/-0.25	5	3.5 ±0.25	10	7	2
7	7 ±0.2	7.3 +0.35/-0.25	6	4.3 ±0.25	13	9	3
8	8 ±0.2	8.3 +0.4/-0.25	8	5.3 +0.3/-0.25	15	11	5
10	10 ±0.2	10.5 +0.4/-0.25	10	6.5 +0.3/-0.25	17	13	8
12	12 ±0.2	12.5 +0.4/-0.25	12	7.5 +0.3/-0.25	19	15	20
16	16 ±0.2	16.5 +0.4/-0.25	12	9.5 +0.3/-0.25	27	20	35
20	20 ±0.2	20.5 +0.4/-0.25	12	11.5 +0.3/-0.25	32	24	60

Ordering d	Ordering data					
Size	Part No.	Туре				
[mm]						
5	191192	YSRW-5-8				
7	191193	YSRW-7-10				
8	191194	YSRW-8-14				
10	191195	YSRW-10-17				
12	191196	YSRW-12-20				
16	191197	YSRW-16-26				
20	191198	YSRW-20-34				

Peripherals overview and type codes


Access	ories		
	Туре	Brief description	→ Page/Internet
1	Shock absorber DYSW	Hydraulic shock absorber with rapidly increasing cushioning force curve	31
2	Reducing sleeve DAYH	To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve	45

FESTO

Technical data

Function

-N- Size

4 ... 12

-T- Stroke length 6 ... 20 mm

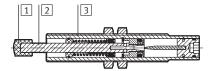
General technical data	eneral technical data								
Size		4	5	7	8	10	12		
Stroke	[mm]	6	8	10	14	17	20		
Mode of operation		Hydraulic shock ab	sorber with spring re	turn					
		Single acting, push	ing						
Cushioning		Self-adjusting, soft	Self-adjusting, soft characteristic curve						
Cushioning length	[mm]	6	8	10	14	17	20		
Type of mounting		With lock nut							
Impact velocity	[m/s]	0.1 2	0.1 2						
Assembly position		Any							
Product weight	[g]	6	11	21	42	67	91		
Ambient temperature	[°C]	-10 +80	•	•	•	•	•		

Reset time [s]						
Size	4	5	7	8	10	12
Reset time ¹⁾	≤ 0.2					≤ 0.3

¹⁾ The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]	Forces [N]							
Size	4	5	7	8	10	12		
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35		
Max. stop force ²⁾ in end positions	100	200	300	500	700	1,000		
(housing)								
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5		

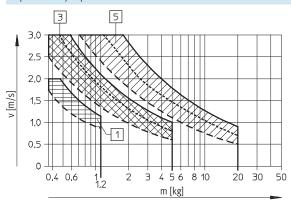
- 1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position
- 2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke
- 3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

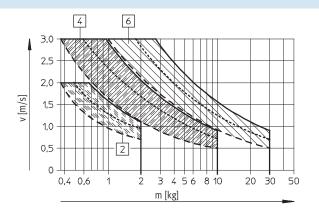

Energies [J]								
Size	4	5	7	8	10	12		
Max. energy absorption per stroke	0.8	1.3	2.5	4	8	12		
Max. energy absorption per hour	7,000	10,000	15,000	21,000	30,000	41,000		
Max. residual energy	0.006	0.01	0.01	0.02	0.03	0.05		

Mass range [kg]						
Size	4	5	7	8	10	12
Mass range up to	1.2	2	5	10	20	30

Technical data

Materials

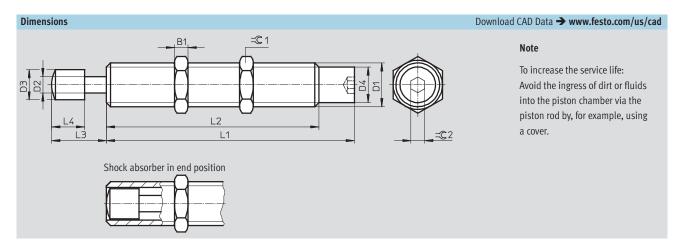

Sectional view



Size		4	5	7	8	10	12		
1	Buffer	Polyacetate							
2	Piston rod	High-alloy steel							
3	Housing	Brass, nickel-plated		High-alloy steel		Galvanised steel			
-	Seals	Nitrile rubber							
	Note on materials	Free of copper, PTFE and silicone							
		Conforms to RoHS							

$Selection\ graph\ for\ self-adjusting\ shock\ absorbers\ with\ progressive\ characteristics\ DYSW$

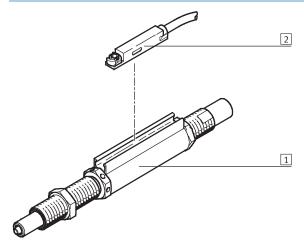
Impact velocity dependent on mass m


Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

- 1 DYSW-4-6-Y1F
- 2 DYSW-5-8-Y1F
- 3 DYSW-7-10-Y1F
- 4 DYSW-8-14-Y1F
- 5 DYSW-10-17-Y1F
- 6 DYSW-12-20-Y1F

Shock absorber	Force A =	Force A =	Force A =
DYSW-4-6-Y1F	0 N	-	50 N
DYSW-5-8-Y1F	0 N	50 N	100 N
DYSW-7-10-Y1F	0 N	75 N	150 N
DYSW-8-14-Y1F	0 N	100 N	200 N
DYSW-10-17-Y1F	0 N	150 N	300 N
DYSW-12-20-Y1F	0 N	200 N	400 N

Technical data

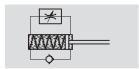


Size [mm]	B1	D1	D2 Ø	D3 ∅	D4 ∅	L1 +0.1
4	2.5	M6x0.5	2	3.5±0.05	5.35±0.05	35.5
5	3	M8x1	2.5	4.7±0.05	6.7±0.05	43.1
7	3.5	M10x1	3	6±0.1	8.6±0.05	52.05
8	4	M12x1	4	7±0.1	10.4±0.1	66.05
10	5	M14x1	5	9±0.1	12.4±0.1	77.55
12	5	M16x1	6	11±0.1	14.4±0.1	90.75

Size [mm]	L2 +0.3 -0.2	L3	L4	= ©1	= ©2	Max. tightening torque =©1 [Nm]
4	25.5	6+0.30/-0.24	4±0.05	8	2	1
5	33.1	8+0.32/-0.28	5.5±0.1	10	2.5	2
7	41.05	10+0.37/-0.28	7±0.2	13	3	3
8	53.05	14+0.37/-0.28	8±0.2	15	4	5
10	64.55	17+0.37/-0.28	10±0.2	17	4	8
12	77.75	20+0.45/-0.30	12±0.2	19	5	20

Ordering data	3	
Size	Part No.	Туре
[mm]		
4	548070	DYSW-4-6-Y1F
5	548071	DYSW-5-8-Y1F
7	548072	DYSW-7-10-Y1F
8	548073	DYSW-8-14-Y1F
10	548074	DYSW-10-17-Y1F
12	548075	DYSW-12-20-Y1F

Peripherals overview


Accessories				
	Туре	Brief description	→ Page/Internet	
1	Stop element YSRWJ	Hydraulic shock absorber with progressive cushioning characteristic. The cushioning length is adjustable	35	
2	Proximity switches SME-/SMT-8	Sensing option for end positions	45	

Type codes YSRWJ Туре YSRWJ Shock absorber Size Stroke [mm] Position sensing Position sensing

Stop elements YSRWJ Technical data

FESTO

Function

-N-Size

5 ... 8 mm

Stroke length 7.5 ... 13.5 mm

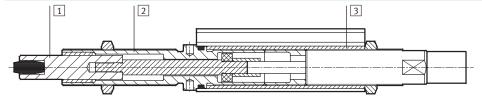
General technical data				
Size		5	7	8
Stroke	[mm]	8	10	14
Mode of operation		A piston rod in front of the shock absorb	per transmits the force to the shock absorb	er. This serves as the end stop and
		actuates the proximity sensor via a magnet mounted on it		
		Single acting, pushing		
Cushioning		Self-adjustable		
Cushioning length	[mm]	8	10	14
Type of mounting		With locknut		
Position sensing		Via proximity sensor		
Impact velocity	[m/s]	0.05 2	0.05 3	
Repetition accuracy [mm]		0.02		
Mounting position		Any		
Product weight	[g]	45	75	110
Ambient temperature [°C]		0 +60		
Corrosion resistance class CRC ¹⁾		2		

1) Corrosion resistance class 2 to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Reset time [s]			
Size	5	7	8
Reset time ¹⁾	≤ 0.2		

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At 0 $^{\rm o}\text{C}\text{,}$ the reset time may be up to 1 second

Forces [N]			
Size	5	7	8
Min. insertion force ¹⁾	5	18	80
Max. stop force ²⁾ in end positions	200	300	500
Min. resetting force ³⁾	1.5	2	3.5

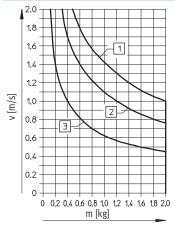

- 1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position
- 2) Impact force may not exceed the maximum specified value
- 3) This is maximum force that can be exerted on the piston rod so that the shock absorber advances fully

Energies [J]			
Size	5	7	8
Max. energy absorption per stroke	1	2	3
Max. energy absorption per hour	10,000	15,000	21,000
Max. residual energy	0.01		0.02

Mass range [kg]			
Size	5	7	8
Permissible mass range up to	2	5	10

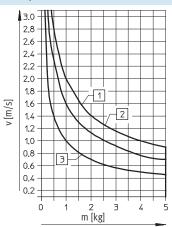
Materials

Sectional view

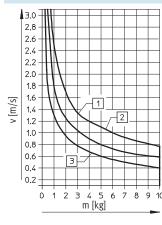


Stop	Stop element			
1	Stop bolt	Steel, stainless and reinforced		
2	Distance sleeve	Galvanised steel		
3	Threaded barrel	Brass, nickel-plated		
-	Note on materials	Free of copper, PTFE and silicone		
		Conforms to RoHS		

Selection graphs for limit stops with shock absorber YSRWJ


Impact velocity dependent on mass m

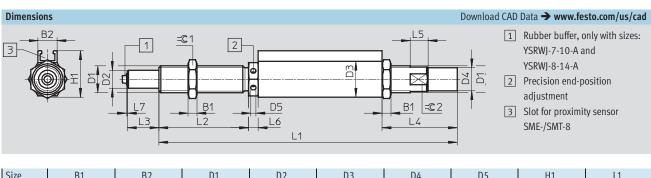
YSRWJ-5-8-A


- Without additional force
- With additional force A = 50 N
- $\boxed{3}$ With additional force A = 100 N

YSRWJ-7-10-A

- 1 Without additional force
- 2 With additional force A = 75 N
- 3 With additional force A = 150 N

YSRWJ-8-14-A

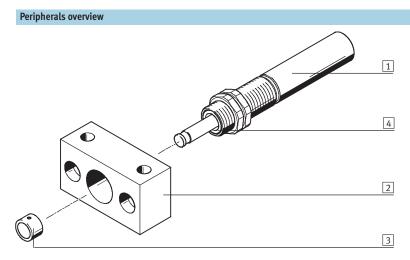


- Without additional force
- 2 With additional force A = 100 N
- With additional force A = 150 N

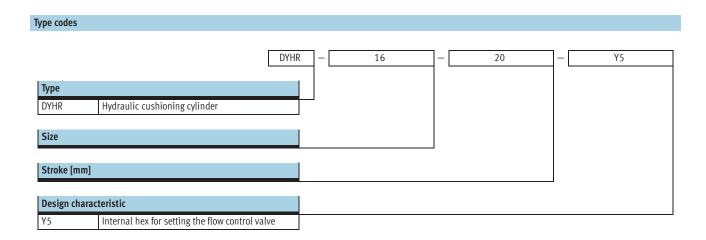
Mode of operation

- Soft cushioning characteristics cushioning stroke is adjustable
- 2 End-position sensing via proximity sensor SME-/SMT-8 that can be integrated
- 3 Precision end-position adjustment
- 4 Precision end position thanks to internal, metallic inserts

Size	B1	B2	D1	D2	D3	D4	D5	H1	L1
[mm]		+0.4			+0.1		+0.1	+0.3	+0.3/-0.1
5	3	8.1	M8x1	4	12	6.7 ±0.05	2	16.5	97.4
7	3.5	8.5	M10x1	6	14	8.6 ±0.05	2.4	18.3	144.8
8	4	8.5	M12x1	8	16	10.4 ±0.1	2.4	20.75	133.3

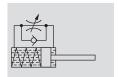

Size	L2	L3	L4	L5	L6	L7	= ©1	= ©2	Max. tightening
									torque =©1
[mm]	+0.4		+0.45/-0.1	+0.5	+0.1/-0.55	+0.3			[Nm]
5	32.5	8 +0.7/-0.55	21.6	5	4.4	0.5	10	7	2
7	40	10 +0.8/-0.55	21.1	6	4	0.5	13	9	3
8	40	14 +0.8/-0.55	33.6	8	4.4	0.5	15	11	5

	Ordering data							
Size	Part No.	Туре						
[mm]								
5	192968	YSRWJ-5-8-A						
7	192967	YSRWJ-7-10-A						
8	192966	YSRWJ-8-14-A						



Hydraulic cushioning cylinders DYHR Peripherals overview and type codes

FESTO


Access	Accessories						
	Туре	Brief description	→ Page/Internet				
1	Hydraulic cushioning cylinder DYHR	Hydraulic cushioning cylinder with spring return for slow feed speeds	39				
2	Mounting flange YSRF	Mounting option for hydraulic cushioning cylinder	42				
3	Buffer YSRP	For protecting the piston rod	44				
4	Wiper seal; hardened piston rod	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-				

Hydraulic cushioning cylinders DYHR Technical data

FESTO

Function

-N-Size 16 ... 32

Stroke length 20 ... 60 mm

General technical data							
Size		16		20		25	32
Stroke	[mm]	20	40	25	50	40	60
Mode of operation		Hydraulic cus	hioning cylind	ler with spring	return		
		Single-acting	, pushing				
Braking speed		Adjustable					
Type of mounting		Via lock nut					
Max. impact velocity	[m/s]	0.3					
Mounting position		Any					
Feed speed	[mm/s]	0.2 100					
Product weight	[g]	190	255	360	440	720	1,380
Ambient temperature	[°C]	0 +80					
Corrosion resistance class CRC ¹⁾		1					

1) Corrosion resistance class 1 according to Festo standard 940 070 Components subject to low corrosion stress. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

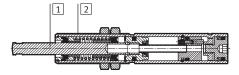
Reset times [s]						
Size	16	20	25	32		
Short stroke ¹⁾	≤ 0.4	≤ 0.5	≤ 0.8	≤ 1.2		
Long stroke ¹⁾	≤ 0.8	≤ 1	-	-		

1) Increased reset times must be expected at low temperatures (0 °C). Up to 5 s with sizes 12 and 16 and up to 12 s with sizes 25 and 32.

Forces [N]						
Size	16	20	25	32		
Min. feed force ¹⁾	160	250	400	640		
Max. feed force ²⁾	1,600	2,500	4,000	6,400		
Resetting force ³⁾	5.4	9	12.5	18		

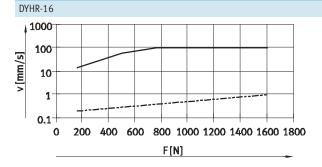
- Min. required force for constant braking speed with repetition accuracy
 Corresponds to max. force in the end position
- 3) With piston rod advanced

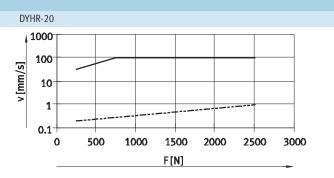
Energies [J]	Energies [J]						
Size		16		20		25	32
Stroke [mm]		20	40	25	50	40	60
Max. energy absorption per stroke		32	64	62.5	125	160	384
Max. energy absorption per hour	100,000	150,000	135,000	200,000	220,000	330,000	
Max. residual energy in the end position	0.16		0.32	•	0.8	2	

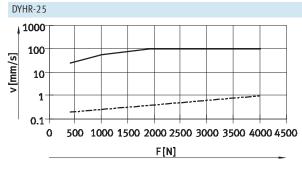


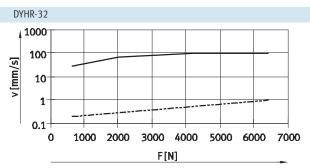
Hydraulic cushioning cylinders DYHR Technical data

FESTO

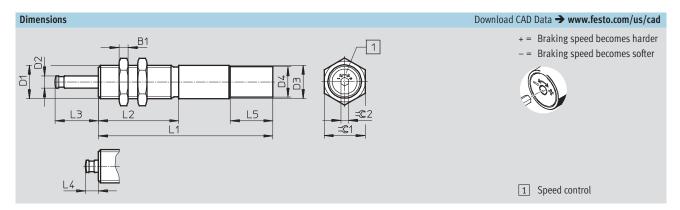

Materials


Sectional view




	Hydrau	lydraulic cushioning cylinder						
Ī	1	Piston rod	Hardened high-alloy steel					
	2	Housing	Galvanised steel					
	-	Seals	Nitrile rubber					
	, in the second	Note on materials	RoHS-compliant					

Braking speed v as a function of motive force F and flow control valve setting



Flow control valve open ---- Flow control valve closed

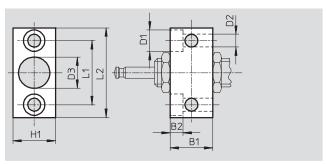
40

Hydraulic cushioning cylinders DYHR Technical data

FESTO

Size	Stroke [mm]	B1	D1	D2 ∅	D3 ∅ +0.15/-0.1	D4 ∅ +0.15	L1
16	20	6	M20x1.25	8	20	_	115±0.1
	40	O	WIZUXI.ZJ	0	20	_	150±0.1
20	25	8	M24x1.25	10	24	_	138±0.1
	50	0	W(24X1.2)	10	24	_	181±0.1
25	40	10	M30x1.5	12	30	28.8	178±0.1
32	60	12	M37x1.5	15	37	34.8	230±0.15

Size	Stroke	L2	L3	L4	L5	= ©1	= ©2
	[mm]	±0.1			±0.2		
16	20	53	28.5+0.4/-0.3	8.5+0.45/-0.4		24	E
	40	55	48.5+0.4/-0.3	0.0+0.45/-0.4	_	24	5
20	25	60	35.6+0.4/-0.3	10.6+0.45/-0.4	_	30	5
	50	00	60.6+0.4/-0.3	10.0+0.45/-0.4	_	50	,
25	40	80	52.8+0.4/-0.3	12.8+0.45/-0.4	28	36	6
32	60	108	76+0.5/-0.4	16+0.5/-0.4	28	46	6


Ordering data			
Size	Stroke	Part No.	Туре
	[mm]		
16	20	1155690	DYHR-16-20-Y5
	40	1155691	DYHR-16-40-Y5
20	25	1155692	DYHR-20-25-Y5
	50	1155693	DYHR-20-50-Y5
25	40	1155694	DYHR-25-40-Y5
32	60	1155696	DYHR-32-60-Y5

FESTO

Mounting flange YSRF/YSRF-C

Material: Steel

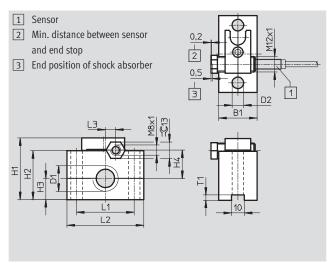
Possible combinations					
Cushioning components Mounting flange	DYSR Y5	Y5-T	YSR-C	YSRW	YDR
YSRF					
YSRF-8	-	-	1)	■ 1)	-
YSRF-12	•	-	-	-	-
YSRF-16	•	-	-	-	
YSRF-20		-	-	-	•
YSRF-25		-	•	-	•
YSRF-32		-		-	
YSRF-C					
YSRF-8-C	•	-	•	•	-
YSRF-12-C	-	•	•	•	-
YSRF-16-C	-	•	•	•	-
YSRF-20-C	-	•	•	•	-

¹⁾ For shock absorber size \varnothing 7

Dimension	is and orde	ring data										
YSRF												
For size	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part No.	Туре
[mm]										[g]		
8	16	5.5	10	5.5	10.2	16	25	38	2	50	11681	YSRF-8
12	25	6.8	11	6.6	15.2	25	36	50	2	175	11682	YSRF-12
16	30	9	15	9	20.2	30	45	63	2	300	11683	YSRF-16
20	36	11	18	11	24.2	36	56	78	2	535	11684	YSRF-20
25	45	13	20	13.5	30.2	45	63	86	2	895	11685	YSRF-25
32	55	15	24	15.5	37.2	55	80	108	2	1,730	11686	YSRF-32

¹⁾ Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

YSRF-C												
For size [mm]	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight [g]	Part No.	Туре
8	20	5.5	10	5.5	12.2	20	28	41	2	90	34575	YSRF-8-C
12	25	6.8	11	6.6	16.2	25	36	50	2	180	34576	YSRF-12-C
16	32	9	15	9	22.2	32	45	63	2	330	34577	YSRF-16-C
20	40	11	18	11	26.2	40	56	78	2	700	34578	YSRF-20-C


Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

FESTO

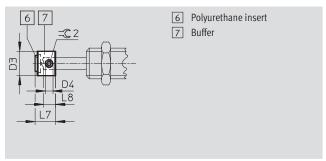
Mounting flange YSRF-S-C

Material: Aluminium, steel Free of copper, PTFE and silicone

Possible combinations		
0 11	YSR-C	YSRW
Mounting flange		
YSRF-S-8-C		
YSRF-S-12-C		
YSRF-S-16-C		
YSRF-S-20-C		

Dimension	Dimensions and ordering data													
For size	B1	D1	D2	H1	H2	Н3	H4	L1	L2	L3	T1	Weight	Part No.	Type
			Ø											
[mm]												[g]		
8	20	M12x1	5.5	35	25	9.5	16	32	45	4	2	12	34579	YSRF-S-8-C
12	25	M16x1	6.6	42	32	12.5	20	36	50	3	4	130	34580	YSRF-S-12-C
16	30	M22x1.5	9	48	38	16.5	22	45	60	8	4	180	34581	YSRF-S-16-C
20	30	M26x1.5	11	52	42	19	23.5	56	80	11.5	4	250	34582	YSRF-S-20-C

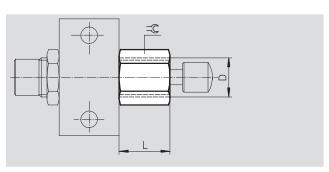
Note


Inductive sensors for position sensing → 45

FESTO

Buffer YSRP

Material: Steel, polyurethane


Dimension	s and ordering da	ta							
For size	D3	D4	L7	L8	=© 2	CRC ¹⁾	Weight	Part No.	Туре
[mm]							[g]		
8	8	M2	6,7	4	0,9	2	4	539638	YSRP-8
12	12	M4	10	6	2	2	7	11133	YSRP-12
16	16	M5	13.5	8	2.5	2	15	11134	YSRP-16
20	20	M6	17	10	3	2	27	11135	YSRP-20
25	25	M8	20.5	12	4	2	52	11136	YSRP-25
32	32	M8	26	15	4	2	110	11137	YSRP-32

¹⁾ Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

Stop limiter YSRA-C

Material: Steel

Dimension	Dimensions and ordering data										
For size	D	L	=©	Weight	Part No. Type						
[mm]				[g]							
7	M10x1	14.5	13	12	150932 YSRA-7-C						
8	M12x1	18	15	28	150933 YSRA-8-C						
12	M16x1	24.5	19	48	150934 YSRA-12-C						

Reducing sleeve DAYH

Material: Stainless steel

To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve.

Built-in shock absorber	Part No.	Reducing sleeve	Part No.	Next smallest shock absorber
YSRC			'	
YSR-5-5-C	1165476	DAYH-4	540060	YSR-4-4-C
DYSC				
DYSC-8-8-Y1F	1165484	DAYH-7	548012	DYSC-7-5-Y1F
DYSC-7-5-Y1F	1165480	DAYH-5	548011	DYSC-5-5-Y1F
DYSW				
DYSW-12-20-Y1F	1165491	DAYH-10	548074	DYSW-10-17-Y1F
DYSW-10-17-Y1F	1165488	DAYH-8	548073	DYSW-8-14-Y1F
DYSW-8-14-Y1F	1165484	DAYH-7	548072	DYSW-7-10-Y1F
DYSW-7-10-Y1F	1165480	DAYH-5	548071	DYSW-5-8-Y1F
DYSW-5-8-Y1F	1165476	DAYH-4	548070	DYSW-4-6-Y1F

Ordering data	- Proximity sensors for T-slot, magneto-re	esistive				Technical data → Internet: smt
	Type of mounting	Switch	Electrical connection	Cable length	Part No.	Туре
		output		[m]		
N/O contact						
	Insertable in the slot from above, flush	PNP	Cable, 3-wire	2.5	543867	SMT-8M-PS-24V-K-2,5-0E
	with cylinder profile		Plug M8x1, 3-pin	0.3	543866	SMT-8M-PS-24V-K-0,3-M8D
		NPN	Cable, 3-wire	2.5	543870	SMT-8M-NS-24V-K-2,5-OE
			Plug M8x1, 3-pin	0.3	543871	SMT-8M-NS-24V-K-0,3-M8D
	Insertable in the slot lengthwise, flush	PNP	Cable, 3-wire	2.5	175436	SMT-8-PS-K-LED-24-B
	with the cylinder profile		Plug M8x1, 3-pin	0.3	175484	SMT-8-PS-S-LED-24-B
N/C contact						
	Insertable in the slot from above, flush with cylinder profile	PNP	Cable, 3-wire	7.5	543873	SMT-8M-PO-24V-K7,5-OE

Ordering data	- Proximity sensors for T-slot, magnetic re	eed				Technical data → Internet: sme
	Type of mounting	Switch	Electrical connection	Cable length	Part No.	Туре
		output		[m]		
N/O contact						
	Insertable in the slot from above, flush	Contacting	Cable, 3-wire	2.5	543862	SME-8M-DS-24V-K-2,5-OE
	with cylinder profile		Plug M8x1, 3-pin	0.3	543861	SME-8M-DS-24V-K-0,3-M8D
NA CONTRACTOR OF THE PARTY OF T	Insertable in the slot lengthwise, flush	Contacting	Cable, 3-wire	2.5	150855	SME-8-K-LED-24
	with the cylinder profile		Plug M8x1, 3-pin	0.3	150857	SME-8-S-LED-24
N/C contact						
1	Insertable in the slot lengthwise, flush	Contacting	Cable, 3-wire	7.5	160251	SME-8-O-K-LED-24
	with the cylinder profile					

Ordering data	- Inductive sensors	M8, for mounting flange	YSRF-S-C				Technical data → Internet: sien
	Electrical connection	1	Switch	LED	Cable length	Part No.	Туре
	Cable	M8 plug	output		[m]		
NO contact							
	3 wires	_	PNP	•	2.5	150386	SIEN-M8B-PS-K-L
	-	3-pin	PNP	•	-	150387	SIEN-M8B-PS-S-L
NC contact							
	3 wires	-	PNP	•	2.5	150390	SIEN-M8B-PO-K-L
	-	3-pin	PNP	•	-	150391	SIEN-M8B-PO-S-L

Ordering data	- Connecting cables				Technical data → Internet: nebu
	Electrical connection, left	Electrical connection, right	Cable length [m]	Part No.	Туре
	Straight socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541333	NEBU-M8G3-K-2.5-LE3
6			5	541334	NEBU-M8G3-K-5-LE3
	Angled socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541338	NEBU-M8W3-K-2.5-LE3
			5	541341	NEBU-M8W3-K-5-LE3

Calculation tool for cushioning components

1. Determine the following values,

– Equivalent mass m_{equiv}

= 25%

= 100% Recommended energy load per

In order to prevent damage to the

Guide values for linear motions:

Factor 2 with strokes < 50 mm.

factor 1.5 with strokes > 50 mm and

factor 1.25 with strokes > 100 mm.

 $W_{total} = \frac{1}{2} \times m \times v^2 + A \times s < W_{max.}$

 $W_h = W_{total} \times Stroke \div Hours < W_{hmax}$

 $A = F + m \times g \times \sin \alpha$

drive concerned, calculations should

in the interests of safety be based on

= 50% ... 100 %

- Impact velocity (v)

- Force (A)

Wopt.

the following values:

 $\omega = 1.25 ... 2 \omega_{m}$

(100 mm

A = F + G

 $m_{\text{equiv.}} = \frac{J}{R^2}$

= 1.25 ... 2 v_m

effective at the time of impact:

Technical data

This selection aid helps you find the right shock absorber for every application.

When you are choosing a shock absorber, we recommend that you proceed as follows:

When you are choosing a shock absorber for your application, ensure that the following values are not exceeded:

Permissible energy load per stroke: $W_{min.}$ $W_{max.}$

The (angular) velocity required in the formulae is the velocity at the time of the impact on the shock absorber. This depends on the dynamic characteristics of the drive component and is thus difficult to determine.

It is better to determine the mean velocity ($v_m = s/t$ or $\omega_m = \varphi/t$).

The following formulae are required for the calculation:

The following applies additionally for

rotary motions:

The following abbreviations are used: A = Additional force = F + G [N]

= Cylinder force minus frictional force [N]

 $A = \frac{M}{R} + m \times g \times \sin \alpha \times \frac{a}{R}$

= Force due to weight = m x g x sin α

Special cases:

 α = 0°: Horizontal motion G = 0

= 90°: Downward motion $G = m \times g$

= 90°: Upward motion: $G = -m \times g$

2. Select a shock absorber from the graphs on the following pages.

3. Check your selection on the basis of its maximum cushioning energy (W_{max.})

Max. energy absorption per hour

Max. residual energy

Max. stop force in end position

The fact that the (angular) velocity appears in the calculation as a squared value means that the larger. The calculation can thus be regarded only as an approximation. The safety factor does, however, ensure that the selected shock absorber is not too small.

Note

Sizing software Shock absorber selection →www.festo.com

FESTO

expected error becomes considerably

v = Impact velocity [m/s] m_{equiv.}= Equivalent mass [kg]

= Acceleration due to gravity $9.81 \, [m/s^2]$

= Shock absorber stroke [m] α = Impact angle [°]

W_{total}= Cushioning work/stroke [J] W_h = Cushioning work/hour [J]

= Mass moment of inertia $[kg \times m^2]$

= Distance between mass pivot point and shock absorber [m]

= Angular velocity [rad/s]

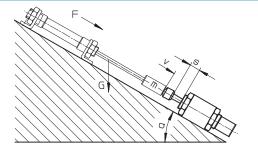
= Drive torque [Nm]

= Distance between centre of gravity of mass and pivot point

47

Calculation tool for cushioning components

FESTO


Technical data

Sizing example for linear motion

This example illustrates the procedure for the selection of a shock absorber for the application shown in the adjacent drawing:

= F + m x g x sin α = 190 N + 50 x 9.81 x sin α N = 537 N

 $m_{equiv} = m = 50 \text{ kg}$

= 50 kg = 1.5 m/s

= 45°

= 190 N

 $(\varnothing 20 \text{ mm with p} = 6 \text{ bar,}$ 1,800 strokes per hour)

In the process of selecting shock absorbers on the basis of the graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (mequiv) and the impact velocity (v). The curves move to the left as the additional force increases.

Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the

graphs show (continuous line), possible choices are the shock absorbers DYSR-25-40 and YSR-25-40-C.

We must now determine whether the maximum permissible values for cushioning work (W_{max.}) and cushioning work per hour (Whmax.) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).

Experiment:

 $W_{total} = \frac{1}{2} x m x v^2 + A x s$ $= (1/2 \times 50 \times 1.5^2 +$ 537 x 0.04) Nm = 78 J

= W_{total} x strokes/h = 78 Nm x 1,800 = 140,000 J

For the above application, both shock absorbers are suitable. Further selection criteria are

adjustment facilities and size.

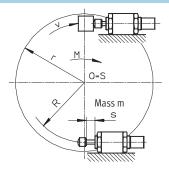
Result		
	DYSR-25-40	YSR-25-40-C
W _{total}	78 J	78 J
W _h	140,000 J	140,000 J
W _{max} .1)	160 J > W _{total}	160 J > W _{total}
W _{hmax} .	220,000 > W _{max} .	$150,000 > W_{\text{max}}$

¹⁾ The degree of utilisation is 49% in both cases.

Calculation tool for cushioning components

FESTO

Technical data


Sizing example for rotary motion

Example for rotary motion:

$$m_{equiv} = J/R^2 = 8 \text{ kg}$$

$$v = \omega x R$$

$$A = M/R = 40 N$$

 $J = 2 \text{ kg m}^2$

 $\omega = 4 \text{ rad/s}$

R = 0.5 m

M = 20 Nm

900 strokes per hour

In the process of selecting shock absorbers on the basis of graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (m_{equiv}) and the impact velocity (v). The curves move to the left as the additional force increases.

Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the graphs show (dotted line), possible choices are the shock absorbers DYSR-16-20 and YSR-16-20-C.

We must now determine whether the maximum permissible values for cushioning work (W_{max.}) and cushioning work per hour (W_{hmax.}) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).

Note: The impact angle must be noted with rotary applications.

$$tan\,\alpha\,=\,\frac{s}{R}$$

s = Cushioning stroke

Experiment:

$$W_{total} = \frac{1}{2} \times m \times v^2 + A \times s$$
$$= (1/2 \times 8 \times 2^2 + 40 \times 0.02) J = 17 J$$

$$W_h$$
 = $W_{total} x \text{ strokes/h}$
= 17 J x 900
= 15,300 J

For the above application, both shock absorbers are suitable.
Further selection criteria are adjustment facilities and size.

Result			
DYSR-16-20 ³⁾	YSR-16-20-C		
17 J	17 J		
15,300 J	15,300 J		
$32 J > W_{total}^{1}$	$30 J > W_{\text{total}}^{2)}$		
100,000 > W _{max.}	64,000 > W _{max.}		
	17 J 15,300 J 32 J > W _{total} ¹⁾		

- 1) The degree of utilisation is 53%.
- 2) The degree of utilisation is 57%.
- Use without buffer.

Product Range and Company Overview

A Complete Suite of Automation Services

Our experienced engineers provide complete support at every stage of your development process, including: conceptualization, analysis, engineering, design, assembly, documentation, validation, and production.

Custom Automation Components Complete custom engineered solutions

Custom Control Cabinets Comprehensive engineering support and on-site services

Complete Systems Shipment, stocking and storage services

The Broadest Range of Automation Components

With a comprehensive line of more than 30,000 automation components, Festo is capable of solving the most complex automation requirements.

Electromechanical Electromechanical actuators, motors, controllers & drives

Pneumatics Pneumatic linear and rotary actuators, valves, and air supply

PLCs and I/O Devices PLC's, operator interfaces, sensors and I/O devices

Supporting Advanced Automation... As No One Else Can!

Festo is a leading global manufacturer of pneumatic and electromechanical systems, components and controls for industrial automation, with more than 12,000 employees in 56 national headquarters serving more than 180 countries. For more than 80 years, Festo has continuously elevated the state of manufacturing with innovations and optimized motion control solutions that deliver higher performing, more profitable automated manufacturing and processing equipment. Our dedication to the advancement of automation extends beyond technology to the education and development of current and future automation and robotics designers with simulation tools, teaching programs, and on-site services.

Quality Assurance, ISO 9001 and ISO 14001 Certifications

Festo Corporation is committed to supply all Festo products and services that will meet or exceed our customers' requirements in product quality, delivery, customer service and satisfaction.

To meet this commitment, we strive to ensure a consistent, integrated, and systematic approach to management that will meet or exceed the requirements of the ISO 9001 standard for Quality Management and the ISO 14001 standard for Environmental Management.

© Copyright 2008, Festo Corporation. While every effort is made to ensure that all dimensions and specifications are correct, Festo cannot guarantee that publications are completely free of any error, in particular typing or printing errors. Accordingly, Festo cannot be held responsible for the same. For Liability and Warranty conditions, refer to our "Terms and Conditions of Sale", available from your local Festo office. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of Festo. All technical data subject to change according to technical update.

Festo North America

Festo Regional Contact Center

5300 Explorer Drive Mississauga, Ontario L4W 5G4 Canada

USA Customers:

For ordering assistance,

Call: 1.800.99.FESTO (1.800.993.3786) 1.800.96.FESTO (1.800.963.3786) Email: customer.service@us.festo.com

For technical support,

Call: 1.866.GO.FESTO (1.866.463.3786) Fax: 1.800.96.FESTO (1.800.963.3786) Email: product.support@us.festo.com

Canadian Customers:

Call: 1.877.GO.FESTO (1.877.463.3786) Fax: 1.877.FX.FESTO (1.877.393.3786) Email: festo.canada@ca.festo.com

USA Headquarters

Festo Corporation 395 Moreland Road P.O. Box 18023 Hauppauge, NY 11788, USA www.festo.com/us

USA Sales Offices

Appleton

North 922 Tower View Drive, Suite N Greenville, WI 54942, USA

Boston

120 Presidential Way, Suite 330 Woburn, MA 01801, USA

Chicago

1441 East Business Center Drive Mt. Prospect, IL 60056, USA

Dallas

1825 Lakeway Drive, Suite 600 Lewisville, TX 75057, USA

Detroit – Automotive Engineering Center 2601 Cambridge Court, Suite 320 Auburn Hills, MI 48326, USA

New York

395 Moreland Road Hauppauge, NY 11788, USA

Silicon Valley

4935 Southfront Road, Suite F Livermore, CA 94550, USA

United States

USA Headquarters, East: Festo Corp., 395 Moreland Road, Hauppauge, NY 11788 Phone: 1.631.435.0800; Fax: 1.631.435.8026;

Email: info@festo-usa.com www.festo.com/us

Canada

Headquarters: Festo Inc., 5300 Explorer Drive, Mississauga, Ontario L4W 5G4 Phone: 1.905.624.9000; Fax: 1.905.624.9001; Email: festo.canada@ca.festo.com

Mexico

Headquarters: Festo Pneumatic, S.A., Av. Ceylán 3, Col. Tequesquinahuac, 54020 Tlalnepantla, Edo, de México Phone: 011 52 [55] 53 21 66 00; Fax: 011 52 [55] 53 21 66 65; Email: festo.mexico@mx.festo.com www.festo.com/mx

Central USA

Festo Corporation 1441 East Business Center Drive Mt. Prospect, IL 60056, USA Phone: 1.847.759.2600 Fax: 1 847 768 9480

Western USA

Festo Corporation 4935 Southfront Road, Livermore, CA 94550. USA

Phone: 1.925.371.1099 Fax: 1.925.245.1286

Festo Worldwide

Argentina Australia Austria Belarus Belgium Brazil Bulgaria Canada Chile China Colombia Croatia Czech Republic Denmark Estonia Finland France Germany Great Britain Greece Hong Kong Hungary India Indonesia Iran Ireland Israel Italy Japan Latvia Lithuania Malaysia Mexico Netherlands New Zealand Norway Peru Philippines Poland Romania Russia Serbia Singapore Slovakia Slovenia South Africa South Korea Spain Sweden Switzerland Taiwan Thailand Turkey Ukraine United States Venezuela