

- Wide variety of applications for handling functions
- Minimal installation space required
- Stroke end positions can be varied according to the depth of engagement of the cylinder
- Additional mounting attachments

2.5

Installation without mounting attachments

Mou	nting attachments and acces	sories				
		Brief description	Piston ∅	PistonØ	Piston ∅	→ Page
			6 mm	10 mm	16 mm	
1	Swivel mounting WBN	For cylinder housing between two hex nuts	-	-	-	1 / 2.5-6
2	Flange mounting FBN	For cylinder housing between two hex nuts	-	-	-	1 / 2.5-5
3	Foot mounting HBN	For cylinder housing between two hex nuts	-	•	-	1 / 2.5-5
4	Self-aligning rod coupler FK	For compensating radial and angular deviations	-	-	-	1 / 2.5-6
5	Rod clevis SG	Permits a swivelling movement of the cylinder in one plane	-	-	-	1 / 2.5-6
6	Rod eye SGS	With spherical bearing	-	•	_	1 / 2.5-6
7	Push-in fitting QS	For connecting compressed air tubing with standard external diameters	•	•	•	Volume 3

Cartridge cylinders EGZ Technical data

Function

- **D** - Diameter

6 ... 16 mm

Stroke length 5 ... 15 mm

FESTO

General technical data								
Piston \varnothing	6	10	16					
Pneumatic connection	M3	M5	M5					
End of piston rod Male thread	M3	M4	M5					
Operating medium	Filtered compressed air, lubricated or u	nlubricated						
Constructional design	Piston							
	Piston rod							
Cushioning	None							
Position sensing	None							
Type of mounting	With lock nut							
	With accessories							
Mounting position	Any							

Operating and environmen	Operating and environmental conditions										
Piston ∅		6	10	16							
Operating pressure	[bar]	1.5 8									
Ambient temperature	[°C]	-20 +80									

Forces and permitted applied load [N]										
Piston \varnothing	6	10		10	10			16		
Stroke	5	10	15	5	10	15	5	10	15	
Theoretical force at 6 bar, advancing	14			42			109			
Spring return force	1.5	2.1	1.6	4	3.5	3	10	8.8	7.5	
Maximum applied load at the piston	0.10			0.15			0.20			
The second secon										

Cylinder	
1 Housing	Brass, nickel-plated
2 Cover	Polyacetal
3 Piston rod	High-alloy steel

Dimensions

2.5

Download CAD data → www.festo.com/en/engineering

Ø [mm]	AM	B1	BE	D1 ∅ H7/f8	EE	KK	KV h13	KW	L1	L2	L3
6 ¹⁾	7	1.8	M10x1	7.6	M3	M3	13	3.5	1.5	6	2.4
10	10	2.2	M16x1.5	12	M5	M4	19	4	2	7	3
16	12	2.7	M22x1.5	18.5	M5	M5	27	5	2	9	3.5

Ø	L4	L5	L6	١	Υ		=©1	=©2
	– Y	– Y	– Y	min.	max.			
[mm]	+1	-1	+1		+ stroke		h13	h13
6 ¹⁾	9	11	15.5	6	5	15	5.5	8
6 ²⁾	11	13	17.5	6	7	17		
10	11	13	18.5	7	6	17.5	7	13
16	13	16	21	8	6	20.5	8	19

- 5 mm stroke
 10 and 15 mm stroke

Ordering data ¹⁾					
Stroke	Part No.	Туре	Stroke	Part No.	Туре
[mm]			[mm]		
Piston ∅ 6 mm			Piston ∅ 10 mm		
5	15 033	EGZ-6-5	5	15 036	EGZ-10-5
10	15 034	EGZ-6-10	10	15 037	EGZ-10-10
15	15 035	EGZ-6-15	15	15 038	EGZ-10-15
Piston Ø 16 mm					
5	15 039	EGZ-16-5			
10	15 040	EGZ-16-10			
15	15 041	EGZ-16-15			

¹⁾ Two hex nuts each for the male cylinder thread and for the piston thread are included in the scope of delivery.

Cartridge cylinders EGZ Accessories

Foot mounting HBN for piston \varnothing 10, 16 mm

Material:

Steel

Free of copper, PTFE and silicone

FESTO

Dimension	imensions and ordering data												
For Ø	Minimum stroke lengths	AB ∅	АН	AO	AT	AU	R1	TR	US	CRC ¹⁾	Weight [g]	Part No.	Type
10	5	5.5	20	6	4	14	13	32	42	2	40	5 125	HBN-12/16X1
16	7	6.6	25	8	5	17	20	40	54	2	90	5 127	HBN-20/25X1

¹⁾ Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents.

Flange mounting FBN for piston \varnothing 10, 16 mm

Material:

Steel

Free of copper, PTFE and silicone

Dimensio	Dimensions and ordering data									
For Ø	Minimum	AB	AT	TF	UF	UR	CRC ¹⁾	Weight	Part No.	Туре
	stroke	Ø								
	lengths									
								[g]		
10	5	5.5	4	40	53	30	2	25	5 130	FBN-12/16
16	7	6.6	5	50	68	40	2	45	5 131	FBN-20/25

¹⁾ Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as

2.5

Swivel mounting WBN for piston \varnothing 10, 16 mm

Material: Tempered steel

Dimension	imensions and ordering data									
For Ø	Minimum	TD	TK	TM	UM	UW	Weight	Part No. Type		
	stroke	Ø								
	lengths									
		m6					[g]			
10	9	6	8	38	58	25	50	8 609 WBN	l-12/16	
16	10	6	8	46	66	30	70	8 610 WBN	l-20/25	

Ordering data	– Piston rod attach	ments	
Designation	For ∅	Part No.	Туре
Rod eye SGS			
~ (6)	10	9 253	SGS-M4
Self-aligning ro	d coupler FK		
	10	6 528	FK-M4
	16	30 984	FK-M5

			Technical data → 1 / 10.3-2
Designation	For Ø	Part No.	Туре
Rod clevis SG			
	10	6 532	SG-M4
I			