FESTO

Characteristics

Ordering data - modular system

Link & kvzb

Configurable product

This product and all its product options can be ordered online via the configurator.

Actuation

Automatic

Manual

The process valve is actuated using a pneumatic quarter turn actuator.

The process valve is actuated using a hand lever.

EX certification

II 2GD

ATEX category for gas II 2G

- Type of ignition protection for gas c T6 ... T3 X
- ATEX category for dust II 2D
- Type of ignition protection for dust c T80 °C ... T200 °C X
- Explosion-proof ambient temperature rating 0°C ≤ Ta ≤ +60°C

Application

Controlled

Open/closed

The required position of the process valve is specified via an analogue positioning signal, e.g. $4\dots 20$ mA.

The process valve is moved into both end positions.

Position indicator

The actual end position of the process valve unit can be transmitted either visually, directly on the process valve or via an electrical signal.

Limit switch box

Optical

Optical and electrical

Sensor principle, position indicator

This selection determines the measuring principle for the position indicator. Inductive sensors operate contactlessly. Magnetic reed and changeover switches operate with contacts.

Floating contact, changeover contact

Operating voltage range 0 \dots 30 V DC Operating voltage range 0 \dots 250 V AC

Max. output current 3000 mA

Inductive

Max. output current 100 mA
Operating voltage range 5 ... 60 V DC

Magnetic reed

Operating voltage range 0 \dots 175 V DC Max. output current 250 mA Operating voltage range 0 \dots 120 V AC

Pilot valve

The pneumatic pilot valve is mounted directly on the quarter turn actuator via the NAMUR interface.

Standard version

A pneumatic pilot valve, with the design principle of a piston slide, is mounted directly on the quarter turn actuator via the NAMUR interface. The piston slide design is the first choice for all standard applications. The technology enables overlap-free switching and, compared to the poppet valve, has a greater flow rate with the same connection size.

Poppet valve version

A pneumatic pilot valve, with the design principle of a poppet valve, is mounted directly on the quarter turn actuator via the NAMUR interface. The advantages of the poppet valve design come into their own when the demands on the application increase. They include greater tolerance against "dirty" compressed air, reduced leakages and fewer dynamic seals, which has an impact on service life.

Connection type

Flange

To DIN EN 1092-1 or ANSI B16.5 class 150

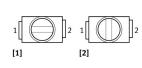
Clamp

To DIN 32676-B or ASME-BPE

Thread

Pipe thread to EN 10226-1 or ASME B1.20.1

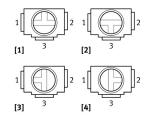
Welded end



To EN 12627 or with extended welded ends to ISO 1127 or ASME-BPE

Valve function

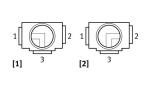
2/2-way



[1] Open

• [2] Closed

3/2-way, T-bore



[1] 1 – 2 connected, 3 closed

- [2] 1 2 3 connected
- [3] 1 3 connected, 2 closed
- [4] 2 3 connected, 1 closed

3/2-way, L-bore

[3] 1 – 3 connected, 2 closed

• [2] 2 – 3 connected, 1 closed

Normal position

1-2 connected, 3 closed, T-bore

1-3 connected, 2 closed, L-bore

2-3 connected, 1 closed, L-bore

Opened

1-2-3 connected, T-bore

1-3 connected, 2 closed, T-bore

2-3 connected, 1 closed, T-bore

Closed

Operating position

1-2 connected, 3 closed, T-bore

1-3 connected, 2 closed, L-bore

2-3 connected, 1 closed, L-bore

Opened

1-2-3 connected, T-bore

1-3 connected, 2 closed, T-bore

2-3 connected, 1 closed, T-bore

Closed

Mode of operation

Double-acting

The double-acting quarter turn actuator requires compressed air for each direction of movement. In this mode of operation, the torque for opening or closing the process valve is generated purely via the compressed air.

Single-acting

With the single-acting quarter turn actuator, the incoming compressed air moves the pistons in one direction. This generates the torque of the actuator. The springs built into the actuator are pre-tensioned at the same time. This spring force generates the torque in the opposite direction of rotation when the pressure chambers of the actuator are exhausted. This causes the process valve to move to the required initial position.

Safety function

Return to normal position

The valve is moved to the selected normal position if the system fails. Note: The selection of the operating mode (double-acting or single-acting) has a decisive influence on when the safety function is carried out.

"Double-acting" operating mode: this function is carried out by a 5/2-way single solenoid pilot valve. The valve is only moved to the normal position if the operating voltage fails, but not if the compressed air supply fails.

• Single-acting" operating mode: this function is carried out by a 3/2-way single solenoid pilot valve. If the operating voltage or compressed air supply fails, the valve is moved to the normal position by the spring force of the actuator.

Hold position with 5/3C pilot valve

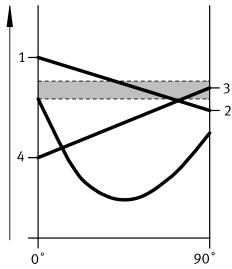
The valve is held in the current position if the operating voltage supply or compressed air fails. This function is only possible with the "double-acting" operating mode and is carried out by a 5/3-way pilot valve with closed intermediate position.

Hold position with 5/2B pilot valve

The valve is held in the current position if the operating voltage supply fails. This function is only possible with the "double-acting" operation mode and is carried out by a 5/2-way double solenoid pilot valve which remains in the position last occupied before the fault occurred when pressure is applied to one side of the actuator. If the compressed air supply fails, the valve cannot be guaranteed to remain in the current position.

Operating pressure

The operating pressure available for actuating the quarter turn actuator.


Safety factor

The specification of a safety factor is recommended when configuring a quarter turn actuator because this increases the available torque reserve. Pipeline medium liquid 1.2

- Pipeline medium sticky/viscous 1.6
- Pipeline medium gaseous 1.5

These values are reference values and must be reviewed according to the application.

Closing torque factor

- $1 \rightarrow 2$ connection pressure
- $3 \rightarrow 4$ spring force
- 0° = ball valve closed, 90° = ball valve open

Note: Specification of the closing torque factor is optional.

The torque required to operate the process valve is greatest at the start of the movement (breakaway torque). Under certain conditions, the closing torque of the process valve can be smaller than the breakaway torque. If this difference is known, it can be taken into account by specifying a closing torque factor.

For single-acting actuators, the correct sizing between the supply pressure $(1 \rightarrow 2)$ and the spring force $(3 \rightarrow 4)$ must be taken into account. When the ball valve opens, the actuator works against the spring and increases the spring force, while the supply pressure decreases at the same time. Point [1] in the diagram is the breakaway torque required to release the ball valve. Point [4] is the closing torque needed to return the ball valve to the closed position.

High corrosion resistance

Yes

Higher corrosion resistance thanks to epoxy coating of the pneumatic quarter turn actuator. The actuator shaft is stainless steel.

Datasheet

General technical data

Design	-
Mode of operation	-
Size of valve actuator	-
Flange hole pattern	-
Swivel angle	-
Product weight	1 120 kg

Operating and environmental conditions

Ambient temperature	-
Operating pressure	-
Operating pressure	-
Operating pressure	-
LABS (PWIS) conformity	VDMA24364 zone III
Note on materials	RoHS-compliant RoHS-compliant

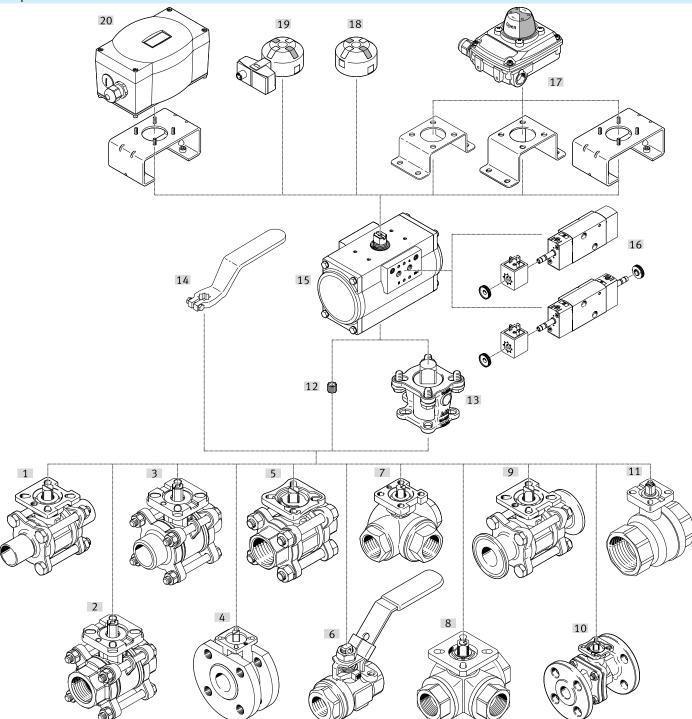
ATEX VSNC

Short type code	VSNC
ATEX category gas	II 2G
Explosion ignition protection	Ex ia IIC T6 Ga
type for gas	
ATEX category dust	II 2D
Explosion ignition protection	Ext IIICT80°C Db
type for dust	
Explosion ambient tempera-	-40°C <= Ta <= +50°C
ture	

ATEX SRBC

Short type code	SRBC
ATEX category gas	16
Explosion ignition protection	Ex ia IICT6T1 Ga
type for gas	
ATEX category dust	II 1D
Explosion ignition protection type for dust	Ex i IIIC Txx°C Da
Explosion ambient tempera-	See ATEX certificate, See IECEx certificate
ture	

ATEX SRBG


Short type code	SRBG
ATEX category gas	16
Explosion ignition protection	Ex ia IICT6T1 Ga
type for gas	
ATEX category dust	II 1D
Explosion ignition protection	Ex ia IIIC T200 135°C Da
type for dust	
Explosion ambient tempera-	See ATEX certificate, See IECEx certificate
ture	

Ordering data

Ordering information – Modular produ	dering information – Modular product system		
	Description	Part no.	Туре
	Automatically actuated with semi-rotary drive, Controlled operation with quarter turn actuator and valve positioner, Manually actuated with hand lever, Variants to EU Explosion Protection Directive (ATEX)	8102172	KVZB-

Peripherals

Peripherals overview

Acces	Accessories → Link		→ Link
	Type/order code	Description	
[1]	Ball valves 2-way VZBD	- Extended welded ends according to ISO 1127 - Extended welded ends according to ASME-BPE	S vzbd
[2]	Ball valves 2-way VZBAGG	- Pipe thread according to EN 10226-1 - Stainless steel design	§ vzba
[3]	Ball valves 2-way VZBAWW	- Welding ends according to EN 12627 - Stainless steel design	§ vzba
[4]	Ball valves 2-way VZBC	- Compact design with flange according to DIN EN 1092-1 - Stainless steel design	§ vzbc
[5]	Ball valves 2-way VZBE	- Pipe thread according to ASME B1.20.1 - Stainless steel design	\mathscr{S} vzbe

Peripherals

Accessories			→ Link
	Type/order code	Description	
[6]	Ball valves 2-way VZBE	- Pipe thread according to ASME B1.20.1	<i>S</i> vzbe
		- Actuated via hand lever	
		- Stainless steel design	
[7]	Ball valves 3-way VZBE	- Pipe thread according to ASME B1.20.1	<i>S</i> vzbe
		- With L-bore or T-bore	
		- Stainless steel design	
[8]	Ball valves 3-way VZBA	- Pipe thread according to EN 10226-1	₿ vzba
		- With L-bore or T-bore	
		- Stainless steel design	
[9]	Ball valves 2-way VZBD	- Clamp ferrule according to DIN 32676-B or ASME-BPE	₿ vzbd
		- Stainless steel design	
[10]	Ball valves 2-way VZBF	- Flange according to ANSI B16.5 Class 150	\mathscr{S} vzbf
		- Stainless steel design	
[11]	Ball valves 2-way VAPB	- Pipe thread according to EN 10226-1	${\mathscr S}$ vapb
		- Brass design	
[12]	Reducing sleeves DARQ-R	For square adjustment of the ball valves	S darq
[13]	Mounting kits DARQ-K-V	For connecting quarter turn actuators and ball valves	${\mathscr S}$ darq
[14]	Hand lever VAOH	Manual operation of the ball valves, lockable manual operation of the ball valves, lockable	${\mathscr S}$ vaoh
[15]	Quarter turn actuators DFPD	In single-acting or double-acting design, has a gear rack-and-pinion combination with a constant torque	$\mathcal S$ dfpd
		curve over the entire swivel range, port pattern according to VDI/VDE 3845	
[16]	Solenoid valves VSNC	Pilot valves with solenoid coils VACF for single-acting and double-acting quarter turn actuators with port	S vsnc
		pattern according to VDI/VDE 3845, can be converted from 3/2 to 5/2 directional control valve simply by	
		turning the seal	
[17]	Sensor boxes SRBC	For electrical feedback and control of the position of process valves, with mounting adapter, sturdy and	S srbc
		corrosion-resistant design, highly visible 3D position indicator for quickly detecting the current position	
		of the quarter turn actuator	
[18]	Position indicators SASF	The compact solution, the direct mounting really minimises the space requirement, with four fixed actu-	${\cal S}$ sasf
		ating vanes offset by 90°	
[19]	Sensor boxes SRBG	For electrical feedback and checking the position of process valves, is mounted without additional ac-	\mathscr{S} srbg
		cessories on quarter turn actuators with port pattern according to VDI/VDE 3845, with M12 plug or ter-	
		minal strip	
[20]	Positioner CMSX	Based on the PID control algorithm, used for position control of single-acting and double-acting pneu-	$\mathscr{S}\operatorname{cmsx}$
		matic quarter turn actuators with mechanical interface according to VDI/VDE 3845	