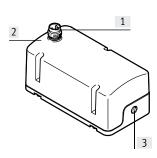
FESTO

Key features


Description

Thanks to the integrated low-noise piezo technology, minimal energy consumption and compact dimensions, the valve VEMD is perfectly suited to mobile applications.

Advantages:

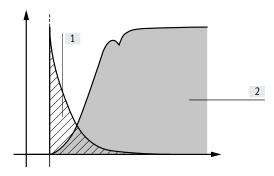
- · Very low energy consumption
- High dynamic response
- No self-heating
- · Absolutely silent
- Excellent price/performance ratio
- · Sturdy and durable
- · Linear control response
- · Small installation space
- · Minimal weight

Mode of operation

- [1] Electrical connection
- [2] Connection 1 (pressure supply connection)
- [3] Connection 2 (working connection)

The VEMD is a mass flow controller with integrated piezo actuator. The flow rate is controlled via a closed-loop control circuit with integrated thermal sensor.

An analogue interface allows the setpoint value for the flow rate to be specified and the actual value to be fed back.

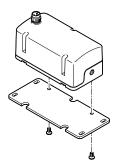

Range of application

The proportional flow control valve VEMD is intended to be used for controlling the flow of air and inert gases in relation to a specified setpoint value.

The flow control valve is suitable for applications in medical technology within the bounds of the specified technical characteristics.

For applications with special requirements, such as with regard to hygiene and sterility, additional measures may be required.

Low energy consumption

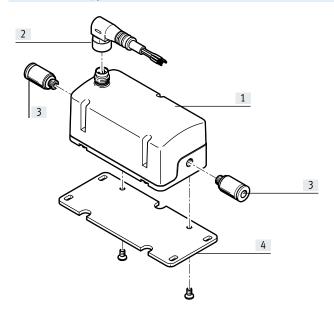


Y-axis: Current I X-axis: Time t

[1] Striped area: Piezo valve[2] Grey area: Solenoid valve

Compared with solenoid valves, proportional valves with piezo technology require virtually no energy to maintain an active state thanks to their capacitive principle. The piezo valve operates like a capacitor: it needs current only at the start in order to charge the piezoceramics. No further energy is needed to maintain its state. The valves therefore generate no heat. They consume up to 95% less energy than solenoid valves, which permanently require an electrical current.

Mounting


The valve VEMD is mounted on the wall mounting VAME-P14-W using two screws.

Product range overview

Function	Description	Nominal operating voltage	Setpoint value	Flow rate control range	Operating p		
		[V DC]	[V]	[l _n /min]	[MPa]	[bar]	
Proportional flow control valve	Mass flow controller, 2-way valve, normally closed	12	0.2 10	0 20	0 0.25	0 2.5	

Peripherals overview

VEMD on mounting plate

Designation		Brief description	→ Page/Internet
[1]	Proportional flow control valve VEMD	-	10
[2]	Connecting cable NEBU	-	10
[3]	Push-in fitting QSM/NPQM	For connecting compressed air tubing with standard O.D.	10
[4]	Mounting plate VAME-P14	For mounting the valve	10

Type codes

001	Series	
VEMD	Proportional flow control valve	
002	Directional control valve type	
L	In-line valve	
003	Valve function	
6	2/2-way valve, normally closed	
004	2/2-way valve, normally closed Nominal width [mm]	
004	Nominal width [mm]	

006	Pressure range [bar]	
D21	0 2.5	
007	Pneumatic connection	
M5	M5	
008	Nominal operating voltage	
1	24 V DC	
5	12 V DC	
009	Electrical connection	
R1	Individual connector M8, 4-pin	
010	Setpoint input for individual valves	
V4	0.2 10 V	

Datasheet

- N - Flow rate control range

0 ... 20 l_n/min

Voltage

12, 24 V DC

- **≜** - Operating pressure

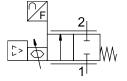
0 ... 0.25 MPa

General technical data						
Valve function		2-way proportional flow regulator				
Flow rate control range ¹⁾	[l _n /min]	0 20				
Dimensions W x L x H	[mm]	37x70x31				
Nominal width	[mm]	1.4				
Pneumatic connection 1, 2		Female thread M5				
Type of mounting		Direct mounting via thread				
Mounting position		Any				
Flow direction		Not reversible				
Product weight	[g]	92				

¹⁾ The flow is calibrated at the factory to the physical standard conditions in accordance with DIN 1343 (1013 mbar, 0° C)

Electrical data					
		VEMD-L-6-14-20-D21-M5-1-R1-V4	VEMD-L-6-14-20-D21-M5-5-R1-V4		
Electrical connection		Plug, M8x1, 4-pin, to EN 61076-2-104			
Nominal operating voltage	[V DC]	24	12		
Operating voltage range	[V DC]	22 26.4	11.1 13.2		
Analogue input signal range	[V]	0.2 10	·		
Analogue output signal range	[V]	0.2 10			
Setpoint value	[V]	0.2 10			
Max. electrical power consumption	[W]	1			
Max. current consumption	[mA]	40	65		
Duty cycle	[%]	100			
Reverse polarity protection		For operating voltage connections			
Degree of protection		IP40, in any mounting position			
		IP51, in horizontal mounting position			

Datasheet

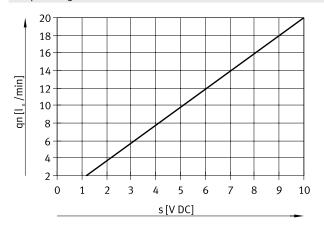

Operating pressure	[MPa]	00.25				
	[bar]	0 2.5				
Overload pressure	[MPa]	0.6				
	[bar]	6				
	[psi]	87				
Burst pressure	[MPa]	1				
	[bar]	10				
	[psi]	145				
Medium		Oxygen (oxygen applications according to IEC 60601-1 only on request)				
		Compressed air to ISO 8573-1:2010 [5:4:1]				
		Inert gases				
		Nitrogen				
Note on the medium	,	Lubricated operation not possible				
Ambient conditions	,	Not suitable for use in an oxygen-enriched environment according to IEC 60601-1				
Special characteristics	,	Oxygen-compatible to DIN EN 1797				
Accuracy of flow rate	[%]	± (4% o.m.v. + 1.25% FS)				
Repetition accuracy FS	[%]	1				
Hysteresis FS	[%]	2.5				
Linearity error FS	[%]	2				
Temperature coefficient K	[%]	0.1				
Ambient temperature	[°C]	050				
Temperature of medium	[°C]	5 40				
Storage temperature	[°C]	- 20 70				
Certification	,	RCM				
Conforms to standard		EN 61000-6-2 (EMC)				
		EN 61000-6-3 (EMC)				
CE marking (see declaration of conformity)		To EU EMC Directive ¹⁾				
		To EU RoHS Directive ¹⁾				
UKCA marking (see declaration of conformity)		UK regs EMC ¹⁾				
		UK regs RoHS ¹⁾				
KC mark		KCEMC				

¹⁾ For information about the area of use, see the EC declaration of conformity at: www.festo.com/catalogue/... → Support/Downloads.

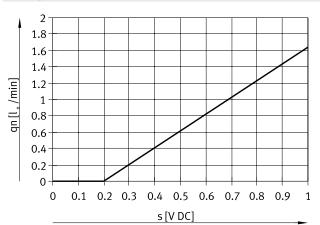
If the devices are subject to usage restrictions in residential, commercial or light-industrial environments, further measures for the reduction of the emitted interference may be necessary.

Materials					
Seals	EPDM, NBR				
Housing	Reinforced PA				
Note on materials	RoHS-compliant RoHS-compliant				
PWIS conformity	VDMA24364 zone III				

Circuit symbol

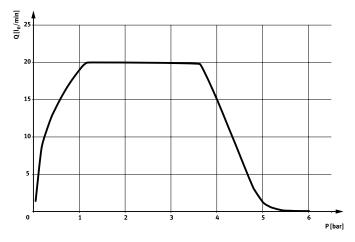

2-way valve, normally closed

Pin allocation								
	Pin	Function						
		VEMD-L-6-14-20-D21-M5-1-R1-V4	VEMD-L-6-14-20-D21-M5-5-R1-V4					
2 /	1	+24 V DC supply voltage	+12 V DC supply voltage					
$\frac{2}{1+\frac{4}}}}{1+\frac{4}{1+\frac{4}{1+\frac{4}{1+\frac{4}}{1+\frac{4}}{1+\frac{4}}{1+\frac{4}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	2	+ Setpoint value 0.2 10 V						
1 + +/3	3	GND						
	4	+ Actual value 0.2 10 V						


Datasheet

Flow rate qn as a function of setpoint value s

Complete range of values


The range in detail

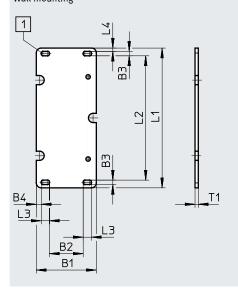
Formula for calculating the setpoint value s as a function of the required nominal flow rate

$$s = \frac{9,8 \cdot (qn + 4 \div 9,8)}{20}$$

Maximum flow rate plotted against operating pressure, at room temperature

Datasheet

Dimensions Dimensions D1 D2/T2 B2 B2 B1


Download CAD data → www.festo.com

- [1] Connecting plug, 4-pin
- [2] Pressure supply port 1
- [3] Working port 2
- [4] Mounting points through-holes Ø 2.2 mm

Туре	B1	В	2	В3	B4	E	35	В6	D1	[)2	D3
VEMD	36.5	14	4.7	18.3	5	32	2.5	2	M8x1	N	15	M2.5
Туре	H1	H2	Н3	L1	L2	L3	L4	L5	L6	T1	T2	T3
VEMD	38.9	30.9	8.6	70	50	10	8	46	12	8	5	5

Dimensions

Wall mounting

Download CAD data → www.festo.com

[1] Mounting recess

Туре	B1	B2	B3	B4	L1	L2	L3	L4	T1
VAME-P14-W	36.5	20.5	2.7	3	85	75.6	5	2	2

Accessories

Ordering data									
	Description	Operating pressure		Nominal operating voltage	Part no.	Туре			
		[MPa]	[bar]	[V DC]					
Proportional flow control valve									
	Mass flow controller, 2-way	0 0.25	0 2.5	24	8086472	VEMD-L-6-14-20-D21-M5-1-R1-V4			
I FOR	valve, normally closed			12	8086473	VEMD-L-6-14-20-D21-M5-5-R1-V4			

Ordering data					
	Description	Description			Туре
Connecting cable					Datasheets → Internet: nebu
	Straight socket, M8x1,	4-pin	2.5 m	541342	NEBU-M8G4-K-2.5-LE4
	Open end, 4-wire	Open end, 4-wire		541343	NEBU-M8G4-K-5-LE4
	Angled socket, M8x1, 4 Open end, 4-wire	i-pin	2.5 m	541344	NEBU-M8W4-K-2.5-LE4
	Straight socket, M8x1, 4-pin		2.5 m	554035	NEBU-M8G4-K-2.5-M8G4
	Straight plug M8x1, 4-pin		5 m	541345	NEBU-M8W4-K-5-LE4
Wall mounting					
For mounting the valve				5225721	VAME-P14-W
Push-in fitting, male thr	ead M5				
6	With internal hex	Metal design	For tubing O.D. 4 mm	558657	NPQM-DK-M5-Q4-P10
			For tubing O.D. 6 mm	558658	NPQM-DK-M5-Q6-P10
		Polymer design	For tubing O.D. 3 mm	153313	QSM-M5-3-I
			For tubing O.D. 4 mm	153315	QSM-M5-4-I
			For tubing O.D. 6 mm	153317	QSM-M5-6-I
	With external hex	Metal design	For tubing O.D. 3 mm	153302	QSM-M5-3
			For tubing O.D. 4 mm	153304	QSM-M5-4
			For tubing O.D. 6 mm	153306	QSM-M5-6