Venturis FESTO

Présentation des produits

Générateur de vide

Tous les générateurs de vide de Festo sont des systèmes à un niveau et fonctionnent selon le principe de Venturi. Les familles de produits décrites ciaprès sont conçues pour les domaines d'application les plus divers. Il est possible de sélectionner des générateurs de vide réglés de façon optimale

pour chaque application spécifique à l'aide des différentes classes de rendement des diverses familles de produits.

Ejecteurs de base et Inline

VN-..

- Diamètre nominal 0,45 ... 1,4 mm
- Vide max. 88%
- Plage de températures

0 ... +60 °C

- Venturis directement utilisables dans la zone de travail et extrêmement efficaces
- Disponible sous la forme droite ou en T
- Encombrement réduit
- Economique
- Pas de pièces d'usure requises
- Temps d'évacuation extrêmement réduit

VAD-.../VAK-... **→** 6 / 1.1-27

- Diamètre nominal 0,5 ... 1,5 mm
- Vide max. 80%
- Plage de températures
 - −20 ...+80 °C
- Série de venturis avec corps robuste en aluminium
- VAK-...: Volume intégré, VAD-...: Raccord pour volume externe
- Exemptes de maintenance
- VAK-...: Dépose sûre de pièces à transporter

FESTO Venturis Caractéristiques

Ejecteurs compacts

VADM-...VADMI-...

- Diamètre nominal 0,45 ... 3 mm
- Vide max. 84%
- Plage de températures 0 ... +60 °C
- Construction compacte
- Frais de montage minimum
- Temps de commutation réduits
- Electrodistributeur intégré (marche/ arrêt)
- VADMI-...: En supplément, électrodistributeur intégré pour impulsion d'éjection
- Filtre avec voyant

- Avec circuit d'économie d'air en option
- Avec vacuostat en option
- Dépose sûre des pièces à transporter

VAD-M-.../VAD-M...-I-... **→** 6 / 1.2-25

- Diamètre nominal 0,7 ... 2 mm
- Vide max. 85%
- Plage de températures 0 ... +40 °C
- Construction compacte
- Frais de montage minimum
- Temps de commutation réduits
- Electrodistributeur intégré (marche/ arrêt)
- VAD-M-I-...: En supplément, électrodistributeur intégré pour impulsion d'éjection
- Dépose sûre des pièces à transporter

Caractéristiques

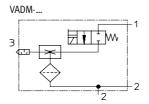
En un coup d'oeil

- Construction compacte et robuste
- Unité rassemblant des composants aux multiples fonctionnalités
- Temps de commutation extrêmement courts grâce aux électrodistributeurs intégrés
- Absence de nécessité de composants externes supplémentaires
- Montage flexible grâce à des dimensions modulaires, particulièrement adapté aux tâches de manipulation
- Montage simple, électrodistributeur, venturi et silencieux ne formant qu'une seule unité
- Protection IP65

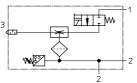
- Avec commande auxiliaire manuelle
- Avec silencieux intégré pour un échappement en toute discrétion
- Avec filtre intégré pour l'air évacué et regard permettant de déterminer le degré de salissure du filtre
- Avec ou sans vacuostat intégré pour la surveillance du vide, sortie PNP ou NPN

FESTO

■ Avec 2 raccords de vide au choix


Venturi VADM-.../-...-P/-N

Dans le cas de ces venturis, l'alimentation en air comprimé est commandée par l'électrodistributeur intégré. Lors de la mise sous tension, le distributeur est commuté et l'air comprimé, qui passe de 1 (P) à 3 (R), crée un vide au niveau des raccords 2 (V) suivant le principe d'injecteur.


Le processus d'aspiration cesse lorsque la tension est coupée. Le silencieux intégré atténue à son minimum le bruit d'échappement.

- Electrodistributeur intégré pour :
- commutation du vide

Les venturis VADM-...-P/N permettent de surcroît de surveiller le vide au moyen d'un vacuostat.

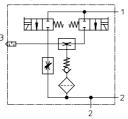
VADM-...-P/-N avec vacuostat

1 = raccord d'air comprimé

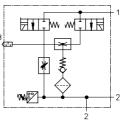
2 = raccord de vide 3 = échappement

Venturi VADMI-.../-...-P/-...-N avec impulsion d'éjection et vacuostat

Lorsqu'un signal est envoyé à l'électrodistributeur intégré, l'air comprimé traverse le venturi et crée du vide. Une fois que la tension est coupée au niveau du distributeur à vide et établie au niveau du distributeur d'impulsion d'éjection, le vide se résorbe au niveau du raccord 2, phénomène accéléré par la mise sous pression. Le silencieux intégré atténue à son minimum le bruit d'échappement.


- Deux électrodistributeurs intégrés
 - commutation du vide
- impulsion d'éjection
- Avec interface de détection
- Avec clapet anti-retour intégré (fonction de sécurité)

Les venturis

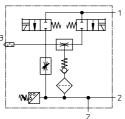

VADMI-...-P/-N permettent de surcroît de surveiller le vide au moyen d'un vacuostat.

VADMI-...

avec impulsion d'éjection

VADMI-...-P/-N avec impulsion d'éjection et vacuostat

- 1 = raccord d'air comprimé
- 2 = raccord de vide
- 3 = échappement


Caractéristiques

Venturi VADMI-...-LS-P/N avec impulsion d'éjection, vacuostat et circuit d'économie d'air

Ce venturi présente une conception similaire aux autres modèles VADMI. Il est toutefois doté d'un vacuostat intégré avec circuit d'économie d'air. Si le seuil de vide réglé n'est pas atteint, le générateur de vide se met automatiquement en marche (principe de fonctionnement du vacuostat des VADMI-...-LS-P/N → 6 / 1.2-12).

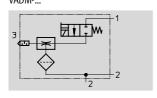
- Electrodistributeur pour création de vide
- Silencieux intégré
- Filtre incorporé 40 µm avec témoin de salissure
- Avec interface de détection pour message de défaut de vide
- Avec clapet anti-retour intégré (fonction de sécurité)
- Avec vacuostat de contrôle de dépression
- Avec 2 raccords de vide

VADM-...-LS-P/N avec économie d'air sortie PNP

- 1 = raccord d'air comprimé
- 2 = raccord de vide
- 3 = échappement

FESTO

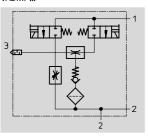
		V	ADM	-	45]-	LS	-	Р
Туре									
VADM	Venturi sans impulsion d'éjection								
VADMI	Venturi avec impulsion d'éjection								
Diamèt	re nominal de la buse Laval [mm]								
45	0,45					_1			
70	0,70								
95	0,95								
140	1,40								
200	2,00								
300	3,00								
Fonction	ns								
LS	Avec économie d'air							,	
Type de	commutation								
Р	PNP (potentiel en sortie de vacuos								
N	NPN (potentiel en sortie de vacuos	stat)							

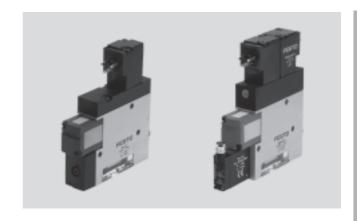

Nota

Pour les combinaisons possibles, se référer aux indications de commande.

FESTO

Venturis VADM/VADMI Fiche de données techniques

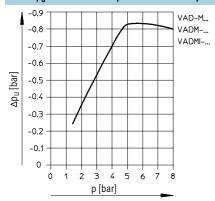

Fonction VADM-...



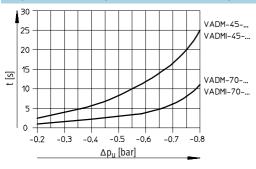
VADMI-...

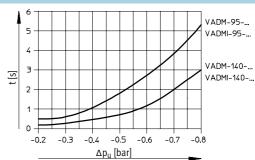
Caractéristiques tec	chniques gén	érales						
Diamètre nominal			45	70	95	140	200	300
Conception			Corps en T					
Fluide de service			Air comprimé r	on lubrifié, finesse	de filtration 40µm			
Position de montage	<u>)</u>		Indifférente					
Caractéristique de l'	éjecteur		Vide élevé					
Mode de fixation			Au choix : par t	araudage ou trou tra	aversant			
Raccordement pneu	matique 1/2		M5/M5	M5/G ¹ /8	G1/8/G1/8	G1/8/G1/4	G1/4/G3/8	G1/4/G3/8
Diamètre nominal d	e la buse	[mm]	0,45	0,7	0,95	1,4	2,0	3,0
Laval								
Pression de service	VADM	[bar]	1,5 8					
	VADMI	[bar]	2 8					
Facteur de marche		[%]	100					
Consommation		[W]	1,4		1,5 (prépilotag	ge)		
Degré de protection			IP65					

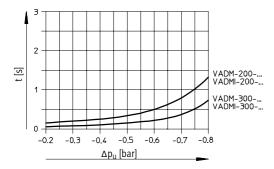
Conditions d'environnement														
Diamètre nominal		45	70	95	140	200	300							
Température ambiante	[°C]	-0 +60												
Résistance à la corrosion	CRC ¹⁾	2												
Note relative aux matériaux		Exempt de cuivre et	de PTFE											


¹⁾ Classe de résistance à la corrosion 2 selon la norme Festo 940 070 Pièces modérément soumises à la corrosion. Pièces externes visibles dont la surface répond essentiellement à des critères d'apparence, en contact direct avec une atmosphère industrielle courante ou des fluides tels que des huiles de coupe ou lubrifiants.

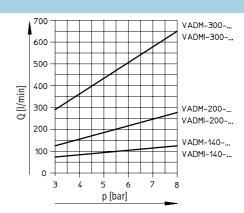
Poids [g]						
Diamètre nominal	45	70	95	140	200	300
VADM	60	140	210	290	320	340
VADMP/-N	65	145	220	300	330	350
VADMI	85	170	240	320	350	370
VADMIP/-N/-LS-P	90	180	250	330	360	380


Venturis VADM/VADMI

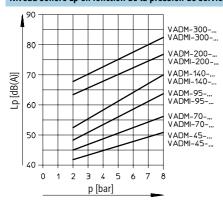

Fiche de données techniques


Vide Δp_u en fonction de la pression de service p

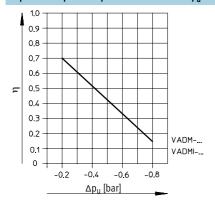
Temps d'évacuation t [s] pour un volume d'1 litre à une pression de service de 6 bar

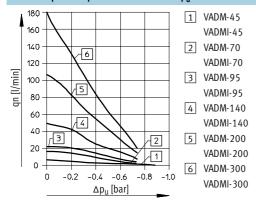

Temps de mise sous pressi	on pour un volume d'1 litre à une pression de s	ervice de 6 bar ¹⁾	
Туре	Avec impulsion d'éjection	Sans impulsion d'éjection	Débit max.
	[s]	[s]	[l/min]
VADM-45	-	5,9	-
VADMI-45	1,9	-	19,2
VADM-70	-	2,2	-
VADMI-70	0,59	-	68
VADM-95	-	1,18	-
VADMI-95	0,24	-	135
VADM-140	-	0,69	-
VADMI-140	0,19	-	200
VADM-200	-	0,29	-
VADMI-200	0,15	-	175
VADM-300	-	0,26	-
VADMI-300	0,2	-	160

¹⁾ Temps requis pour abaisser la dépression de -0,75 à -0,05 bar.

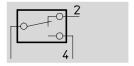

Fiche de données techniques

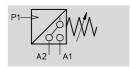
Consommation d'air Q en fonction de la pression de service p




Niveau sonore Lp en fonction de la pression de service p (sans débit d'aspiration)

Capacité d'aspiration η en fonction du vide Δp_u à P_{nom} 6 bar

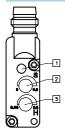

Débit d'aspiration qn en fonction du vide∆p_{II}



Fiche de données techniques

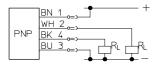
Vacuostat pour venturis VADM...-...-P/N

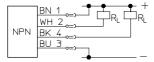
Schéma de connexion


- Vacuostat piézorésistif à point de commutation et hystérésis réglables
- LED d'affichage d'état de commutation jaune
- Raccordement électrique protégé contre les inversions de polarité

FESTO

Caractéristiques techniques g	ónóralos	
, , ,		
Caractéristiques pneumatiques	S	
Plage de pression max.	[bar]	00,95
Point de commutation	[bar]	0 –0,9 (réglable)
Hystérésis	[bar]	0,05 0,5 (réglable)
Effets de la température		≤ ±5 mbar/10K (sur point de commutation)
Caractéristiques électriques		
Tension de service	[V CC]	24 (15 30)
Chute de tension	[V]	1,2 (à la sortie de commutation)
Intensité à la sortie de	[mA]	130
commutation		
Consommation interne max.	[mA]	25
Retard de commutation max.	[ms]	5
Raccord		Protégé contre les inversions de polarité
Caractéristiques mécaniques		
Type de construction		Vacuostat piézorésistif à point de commutation et hystérésis réglables
Ambiance/environnement		
Degré de protection		IP65


Commandes du vacuostat


- 1 LED d'affichage d'état de commutation jaune
- 2 Réglage du point de commutation
- 3 Réglage de l'hystérésis

Affectation des broches

Sortie PNP

Sortie NPN

BN = marron

WH = blanc BK = noir

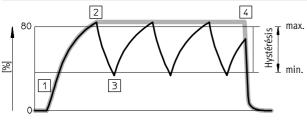
BU = bleu R_L = charge Affectation des broches

1 marron: pôle plus

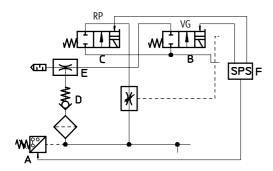
2 blanc: contact à ouverture
3 bleu: pôle moins
4 noir: contact à fermeture

Fiche de données techniques

VADMI-...-P/N avec fonction d'économie d'énergie


Commutation de vide classique → de précieuses économies d'énergie

Dans le cas des venturis VADMI, le réglage de la valeur maximale s'effectue avant la régulation de l'hystérésis (plage de fonctionnement sécurisé). La limite basse correspond alors à la valeur minimale.


Tant que le niveau de vide reste dans cette plage, la pièce est transportée en toute sécurité. Le venturi VADMI n'est activé par la commande externe que lorsque le niveau descend en deçà de la valeur minimale; il est désactivé dès que la valeur maximale est atteinte. Un clapet anti-retour prévient toute baisse du niveau de vide lorsque le générateur est inactif.

FESTO

Cycle de fonctionnement

Courbe de vide optimale
Courbe de vide réelle

- RP Impulsion d'éjection
- VG Vide activé/désactivé
- E Générateur de vide
- D Clapet anti-retour
- A Vacuostat

Vide activé

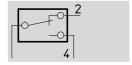
- 1 La commande externe F active les bobines VG
 - → Le distributeur d'alimentation en air comprimé B s'ouvre
 - → La génération de vide E est activée

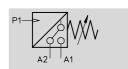
Vide désactivé

- 2 Le niveau maximal défini est atteint :
 - → Le capteur de pression A envoie un signal à la commande externe
 - → La commande désactive la bobine VG
 - → La génération de vide est interrompue
 - → Le clapet anti-retour D empêche la baisse du niveau de vide

Vide activé

- 3 Le débit de fuite provoque la baisse du niveau de vide, qui atteint la valeur minimale
 - → Le capteur de pression A envoie un signal à la commande externe F
 - → La commande F réactive les bobines VG B
 - → La génération de vide E est réactivée
 - → Répétition des points 2 et 3


Fin de cycle : vide désactivé


- 4 Transport terminé
 - → La commande externe (API) F désactive la bobine VG B
 - → La génération de vide E s'arrête
 - → La commande externe active la bobine RP C
 - → Niveau de vide à 0
 - → Dépose de la pièce

Fiche de données techniques

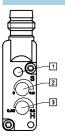
Vacuostat et jeu de câbles pour venturis avec économie d'air VADMI-...-LS-P/N

Schéma de connexion

- Vacuostat piézorésistif à point de commutation et hystérésis réglables
- Economie d'air uniquement avec le câble fourni
- LED d'affichage d'état de commutation jaune
- Raccordement électrique protégé contre les inversions de polarité

FESTO

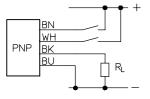
Caractéristiques techniques g	énérales	
Caractéristiques pneumatiques	5	
Plage de pression max.	[bar]	0 1
Pression de surcharge max.	[bar]	5 (pour t <1 min)
Point de commutation	[bar]	00,9 (réglable)
Hystérésis	[bar]	0,1 0,6 (réglable)
Effets de la température		≤ ±10 mbar/10K (sur point de commutation)
Caractéristiques électriques		
Tension de service	[V CC]	24 V (±10%, pour VADMI-70-LS-P +10%-5%)
Chute de tension	[V]	1,2 (à la sortie de commutation)
Intensité à la sortie de	[mA]	130
commutation		
Consommation interne max.	[mA]	25
Retard de commutation max.	[ms]	2 (avec dérivation NPN : 20 ms)
Raccord		Protégé contre les inversions de polarité
Caractéristiques mécaniques		
Type de construction		Vacuostat piézorésistif avec circuit d'économie d'air intégré
Ambiance/environnement		
Degré de protection		IP65

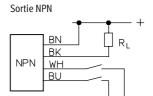

Fonctionnement

Le venturi VADMI-...-LS-P/N, lorsqu'il est équipé du jeu de câbles fourni, se dote d'une fonction d'économie d'air. Les deux potentiomètres du vacuostat permettent de régler la plage de vide suffisante au maintien de la pièce. Le vacuostat génère un signal de synchronisation A2 qui active les bobines de marche et d'arrêt du vide du venturi uniquement lorsque la dépression chute en deçà du seuil défini à cause, p. ex. d'une fuite.

Le restant du temps, le vide est maintenu grâce à un clapet anti-retour, même lorsque le venturi est désactivé. En outre, un signal d'avertissement A1, dont le niveau passe de +24 V (fonctionnement normal) à 0 lorsque le vide chute de 150 mbar en deçà du seuil critique, permet de détecter tout dysfonctionnement du dispositif. Ceci se produit p. ex. lorsque la pièce à déplacer est tombée de la ventouse et qu'il devient de ce fait impossible de générer la dépression désirée.

Accessoires (compris dans la fourniture) :

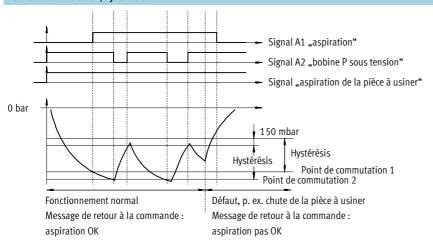

■ Câble de connexion N'utiliser le vacuostat qu'avec le jeu de câbles fourni. Les connexions 1, 2 et 4 sont toutefois interchangeables sans risque de détérioration de l'appareil.



- 1 LED d'affichage d'état de commutation jaune
- 2 Réglage du point de commuta-
- 3 Réglage de l'hystérésis

Affectation des broches

BN = marron WH = blanc BK = noir

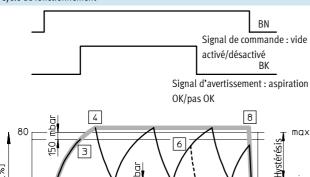

BU = bleu R_L = charge Affectation des broches

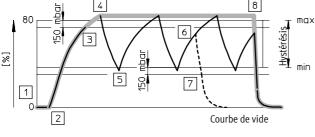
1 marron: pôle plus

2 blanc : contact à ouverture 3 bleu : pôle moins 4 noir : contact à fermeture

Points de commutation/hystérésis

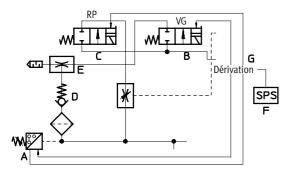
Fiche de données techniques


VADMI-...-LS-P/N avec fonction d'économie d'énergie et message d'erreur


La commutation de vide par excellence

Autre mesure d'économie d'énergie complémentaire des fonctions décrites ci-dessus, un message de défaut qui indique quel est l'état de commutation piloté par le vacuostat.

Si une ventouse n'arrive pas à saisir une pièce ou si un tuyau éclate, le vacuostat signale cet événement à l'unité de commande externe (API) F, de façon à attirer l'attention de l'utilisateur. La fonction de commutation décentralisée rend superflue toute commande externe de commutation du vide (circuit d'économie d'air). La câblage est alors considérablement simplifié.


Cycle de fonctionnement

- RP Impulsion d'éjection
- VG Vide activé/désactivé
- E Générateur de vide
- D Clapet anti-retour
- C Impulsion d'éjection
- G Dérivation
- A Vacuostat

Signal de départ

- 1 La commande externe F active le capteur de pression
 - → Le capteur de pression A contrôle l'état du vide
 - → Absence de vide

Vide activé

- 2 Le capteur de pression active la bobine VG B
 - → Le distributeur d'alimentation en air comprimé s'ouvre
 - → La génération de vide E est activée
- 3 Niveau de vide inférieur de moins de 150 mbar au niveau maximal
 - → Le capteur de pression envoie un signal de validation en direction de la commande externe (API) F BK

FESTO

→ Le transport peut commencer

Vide désactivé

- 4 Le niveau maximal défini est atteint
 - → Le capteur de pression A désactive la bobine VG
 - → L'alimentation en air s'arrête
 - → La génération de vide E est interrompue
 - → Le clapet anti-retour D empêche la baisse du niveau de vide

Vide activé

- 5 Le débit de fuite provoque la baisse du niveau de vide, qui atteint la valeur minimale
 - → Le capteur de pression A réactive les bobines VG
 - → La génération de vide E est réactivée

Défaut : arrêt du transport

- 6 Fuite importante qui déclenche une chute trop rapide du niveau de vide
 - → Le générateur de vide E ne peut pas compenser la chute de niveau
- 7 Le niveau de vide chute de 150 mbar en deçà de la valeur minimale
 - → Le capteur de pression A envoie un message de défaut à la commande externe (API) F BK
 - → La commande externe interrompt le transport
 - → La génération de vide E s'arrête

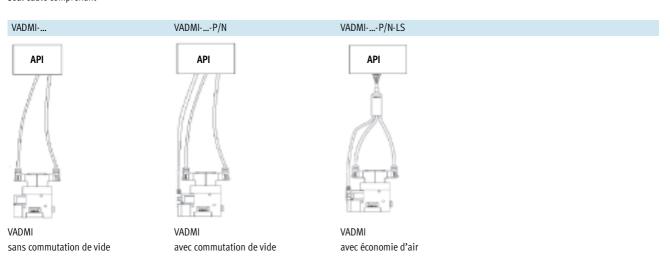
Fin de cycle : vide désactivé

- 8 Fin du transport
 - → La commande externe (API) F désactive la bobine VG
 - → La génération de vide E s'arrête
 - → La commande externe F active la bobine RP C WH
 - → Activation de l'impulsion d'éjection
 - → Dépose de la pièce

Fiche de données techniques

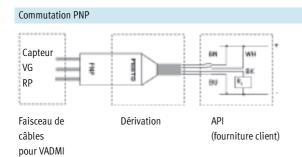
Connexion à l'automate

VADMI-...-LS-P/N avec circuit PNP et NPN


Les trois faisceaux de câbles de commande et d'alimentation sont rassemblés en une dérivation au dessus du générateur de vide; le raccordement à l'API s'effectue donc au moyen d'un seul câble comprenant un conducteur de signal et trois conducteurs d'alimentation.

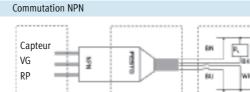
Le venturi VADMI-LS offre deux configurations de signaux destinées aux unités de commande externes (API), lesquelles ne présentent pas de différence notable en termes de fonctionnement. Le générateur de vide et le vacuostat étant communs aux deux versions, les signaux sont convertis uniquement au niveau de la dérivation.

Seule la dérivation distingue ainsi ces deux modèles.

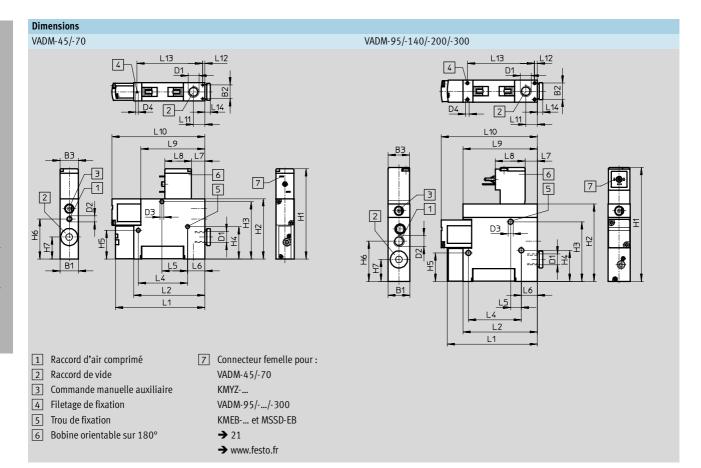

Les raccords enfichables du faisceau de câble doivent être reliés aux différents composants du VADMI-LS conformément aux repères. L'épissure à quatre conducteurs en provenance de la dérivation doit être raccordée comme suit à l'unité de commande :

FESTO

Epissure à quatre conducteurs

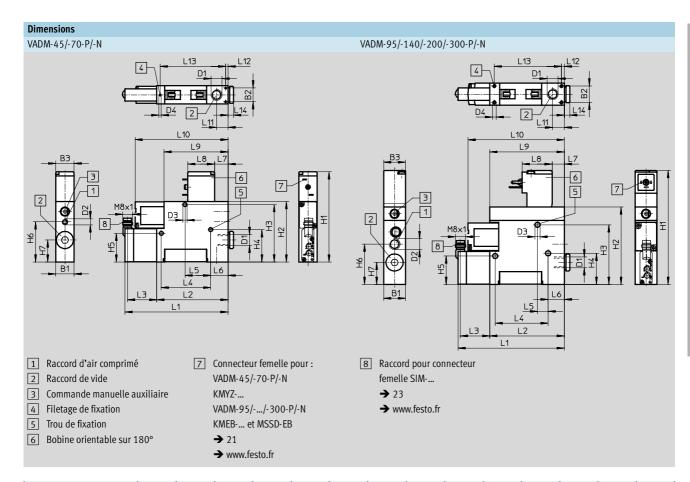


BN = marron – génération de vide


WH = blanc - impulsion d'éjection

BK = noir - récepteur R_L (API)

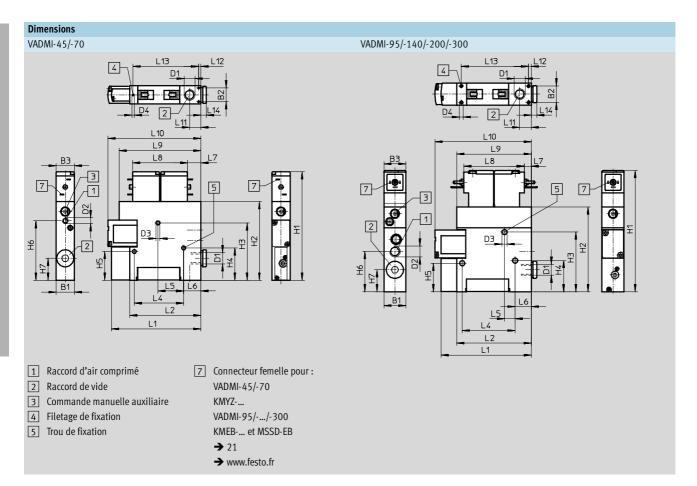
BU = bleu - masse


Faisceau de Dérivation API
câbles (fourniture client)
pour VADMI

Туре	B1	B2	В3	D1	D2	D3	D4	H1	H2	Н3	H4	H5	Н6	H7
						Ø								
VADM-45	10	6,2	10	M5	M5	3,2	M2	64,4	44,4	40,8	23,8	23,8	29,6	18
VADM-70	15	11,2	15	G1/8	M5	3,2	M2	73,9	49,4	47	26,5	23,5	32,9	18
VADM-95	18	13,4	18	G1/8	G1/8	4,2	M2,5	93,4	63,4	48,9	25,5	23,3	33	18
VADM-140	22	16,6	18	G1/4	G1/8	5,2	M3	107,4	77,4	61,4	41,4	41,4	36	17,5
VADM-200	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19
VADM-300	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45	56	41	33,6	25	3,6	11	16	41	56	7,9	1,9	36,3	4
VADM-70	73,3	58,3	40,4	21	14,2	11	22	52,4	76,1	9,4	1,9	53,7	4,5
VADM-95	73,8	61	43,3	8,7	13,2	9,7	24,5	61	78,8	9,5	2,3	55	4,5
VADM-140	96,8	84	26	12,5	28,5	9,7	24,5	61	96,8	13,8	2,3	79,4	5
VADM-200	96,8	84	26	12,5	28,5	9,7	24,5	61	101,8	12,5	2,3	79,4	5
VADM-300	133,2	120,4	26	12,5	28,5	9,7	24,5	61	137,4	12,5	2,3	115,8	5

Fiche de données techniques

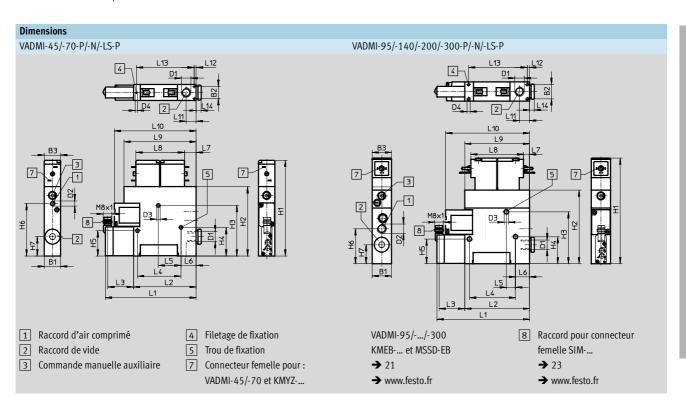


Туре	B1	B2	В3	D1	D2	D3	D4	H1	H2	H3	H4	H5	Н6	H7
						Ø								
VADM-45-P/-N	10	6,2	10	M5	M5	3,2	M2	64,4	44,4	40,8	23,8	23,8	29,6	18
VADM-70-P/-N	15	11,2	15	G1/8	M5	3,2	M2	73,9	49,4	47	26,5	23,5	32,9	18
VADM-95-P/-N	18	13,4	18	G1/8	G1/8	4,2	M2,5	93,4	63,4	48,9	25,5	23,3	33	18
VADM-140-P/-N	22	16,6	18	G1/4	G1/8	5,2	M3	107,4	77,4	61,4	41,4	41,4	36	17,5
VADM-200-P/-N	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19
VADM-300-P/-N	22	16,6	18	G3/8	G1/4	5,2	M3	113,4	83,4	67,7	41,4	41,4	40	19

Туре	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45-P/-N	71,4	41	28,4	33,6	25	3,6	11	16	41	56	7,9	1,9	36,3	4
VADM-70-P/-N	88,7	58,3	28,4	40,4	21	14,2	11	22	52,4	76,1	9,4	1,9	53,7	4,5
VADM-95-P/-N	91,4	61	28,4	43,3	8,7	13,2	9,7	24,5	61	78,8	9,5	2,3	55	4,5
VADM-140-P/-N	114,4	84	28,4	26	12,5	28,5	9,7	24,5	61	96,8	13,8	2,3	79,4	5
VADM-200-P/-N	114,4	84	28,4	26	12,5	28,5	9,7	24,5	61	101,8	12,5	2,3	79,4	5
VADM-300-P/-N	150,8	120,4	28,4	26	12,5	28,5	9,7	24,5	61	137,4	12,5	2,3	115,8	5

Venturis VADM/VADMI

Fiche de données techniques



Туре	B1	B2	В3	D1	D2	D3	D4	H1	H2	Н3	H4	H5	Н6	H7
						Ø								
VADMI-45	10	6,2	10	M5	M5	3,2	M2	78,2	58,2	40,8	23,8	23,8	43,4	18
VADMI-70	15	11,2	15	G1/8	M5	3,2	M2	88,9	64,4	47	26,5	23,5	48,8	18
VADMI-95	18	13,4	18	G1/8	G1/8	4,2	M2,5	99,4	69,4	48,9	25,5	23,3	33	18
VADMI-140	22	16,6	18	G1/4	G1/8	5,2	M3	113,4	83,4	61,4	41,4	41,4	36	17,5
VADMI-200	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19
VADMI-300	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADMI-45	56	41	33,6	25	3,6	11	33	55	56	7,9	1,9	36,3	4
VADMI-70	73,3	58,3	40,4	21	14,2	11	45	67	76,1	9,4	1,9	53,7	4,5
VADMI-95	73,8	61	43,3	8,7	13,2	5,7	49,5	61	78,8	9,5	2,3	55	4,5
VADMI-140	96,8	84	26	12,5	28,5	5,7	49,5	61	96,8	13,8	2,3	79,4	5
VADMI-200	96,8	84	26	12,5	28,5	5,7	49,5	61	101,8	12,5	2,3	79,4	5
VADMI-300	133,2	120,4	26	12,5	28,5	5,7	49,5	61	137,4	12,5	2,3	115,8	5

Fiche de données techniques

Туре

Н1

Н3

H4

H5

Н6

Н7

						Ø								
VADMI-45-P/-N	10	6,2	10	M5	M5	3,2	M2	78,2	58,2	40,8	23,8	23,8	43,4	18
VADMI-70-P/-N	15	11,2	15	G1/8	M5	3,2	M2	88,9	64,4	47	26,5	23,5	48,8	18
VADMI-95-P/-N	18	13,4	18	G1/8	G1/8	4,2	M2,5	99,4	69,4	48,9	25,5	23,3	33	18
VADMI-140-P/-N	22	16,6	18	G1/4	G1/8	5,2	М3	113,4	83,4	61,4	41,4	41,4	36	17,5
VADMI-200-P/-N	22	16,6	18	G3/8	G1/4	5,2	М3	119,4	89,4	67,7	41,4	41,4	40	19
VADMI-300-P/-N	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19
VADMI-45-LS-P	10	6,2	10	M5	M5	3,2	M2	78,2	58,2	40,8	23,8	23,8	43,4	18
VADMI-70-LS-P	15	11,2	15	G1/8	M5	3,2	M2	88,9	64,4	47	26,5	23,5	48,8	18
VADMI-95-LS-P	18	13,4	18	G1/8	G1/8	4,2	M3	99,4	69,4	48,9	25,5	23,3	33	18
VADMI-140-LS-P	22	16,6	18	G1/4	G1/8	5,2	M3	113,4	83,4	61,4	41,4	41,4	36	17,5
VADMI-200-LS-P	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19
VADMI-300-LS-P	22	16,6	18	G3/8	G1/4	5,2	M3	119,4	89,4	67,7	41,4	41,4	40	19
Туре	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADMI-45-P/-N	71,4	41	28,4	33,6	25	3,6	11	33	55	56	7,9	1,9	36,3	4
VADMI-70-P/-N	88,7	58,3	28,4	40,4	21	14,2	11	45	67	76,1	9,4	1,9	53,7	4,5
VADMI-95-P/-N	91,4	61	28,4	43,3	8,7	13,2	5,7	49,5	61	78,8	9,5	2,3	55	4,5
VADMI-140-P/-N	114,4	84	28,4	26	12,5	28,5	5,7	49,5	61	96,8	13,8	2,3	79,4	5
VADMI-200-P/-N	114,4	84	28,4	26	12,5	28,5	5,7	49,5	61	101,8	12,5	2,3	79,4	5
VADMI-300-P/-N	150,8	120,4	28,4	26	12,5	28,5	5,7	49,5	61	137,4	12,5	2,3	115,8	5
VADMI-45-LS-P ¹⁾	71,4	41	28,4	33,6	25	3,6	11	33	55	56	7,9	1,9	36,3	4
VADMI-70-LS-P	88,7	58,3	28,4	40,4	21	14,2	11	45	67	76,1	9,4	1,9	53,7	4,5
VADMI-95-LS-P	91,4	61	28,4	43,3	8,7	13,2	5,7	49,5	61	78,8	9,5	2,3	55	4,5
VADMI-140-LS-P	114,4	84	28,4	26	12,5	28,5	5,7	49,5	61	96,8	13,8	2,3	79,4	5
VADMI-200-LS-P	114,4	84	28,4	26	12,5	28,5	5,7	49,5	61	101,8	12,5	2,3	79,4	5
VADMI-300-LS-P	150,8	120,4	28,4	26	12,5	28,5	5,7	49,5	61	137,4	12,5	2,3	115,8	5

¹⁾ Avec le type ... -LS- ..., les connecteurs femelles sont compris dans la fourniture.

B2

В3

Venturis VADM/VADMI Fiche de données techniques

Références										
Taille	Bobines	Sans vacuostat		Avec vacuostat						
				Sortie PNP	Sortie NPN					
		N° pièce Type		N° pièce Type	N° pièce Type					
Sans impulsi	on d'éjection									
45	MZB	162 500 VADM-45		162 512 VADM-45-P	162 513 VADM-45-N					
70	MYB	162 501 VADM-70		162 514 VADM-70-P	162 515 VADM-70-N					
95	MEB	162 502 VADM-95		162 516 VADM-95-P	162 517 VADM-95-N					
140	MEB	162 503 VADM-140		162 518 VADM-140-P	162 519 VADM-140-N					
200	MEB	162 504 VADM-200		162 520 VADM-200-P	162 521 VADM-200-N					
300	MEB	162 505 VADM-300		162 522 VADM-300-P	162 523 VADM-300-N					
		·								
Avec impulsi	on d'éjection									
45	MZB	162 506 VADMI-45		162 524 VADMI-45-P	162 525 VADMI-45-N					
70	MYB	162 507 VADMI-70		162 526 VADMI-70-P	162 527 VADMI-70-N					
95	MEB	162 508 VADMI-95		162 528 VADMI-95-P	162 529 VADMI-95-N					
140	MEB	162 509 VADMI-140		162 530 VADMI-140-P	162 531 VADMI-140-N					
200	MEB	162 510 VADMI-200		162 532 VADMI-200-P	162 533 VADMI-200-N					
300	MEB	162 511 VADMI-300		162 534 VADMI-300-P	162 535 VADMI-300-N					

Références									
Taille	Bobines	Avec vacuostat							
		Sortie PNP	Sortie NPN						
		N° pièce Type	N° pièce Type						
Avec impulsion d'éjection et économie d'air									
45	MZB	171 053 VADMI-45-LS-P	171 054 VADMI-45-LS-N						
70	MYB	171 055 VADMI-70-LS-P	171 056 VADMI-70-LS-N						
95	MEB	171 057 VADMI-95-LS-P	171 058 VADMI-95-LS-N						
140	MEB	171 059 VADMI-140-LS-P	171 060 VADMI-140-LS-N						
200	MEB	171 061 VADMI-200-LS-P	171 062 VADMI-200-LS-N						
300	MEB	171 063 VADMI-300-LS-P	171 064 VADMI-300-LS-N						

Nota

Avec les venturis VADMI-...-LS-P/N, le câble de connexion et les connecteurs femelles pour les bobines et le vacuostat sont compris dans la fourniture.

Ces venturis ne doivent être utilisés qu'avec le câble fourni.