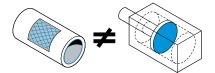
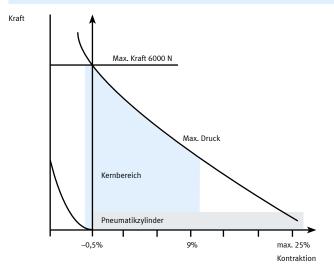
## Fluidic Muscle DMSP

# **FESTO**




#### Merkmale

#### **Funktionsweise**




Der Pneumatische Muskel ist ein Zugaktuator, der dem biologischen Muskel nachempfunden ist. Er besteht aus einem Kontraktionsschlauch und Anbindungsstücken. Der Kontraktionsschlauch setzt sich aus einer Gummimembran und aus einem innenliegenden Gelege aus Aramidgarnen zusammen. Die Membran schließt das Betriebsmedium hermetisch dicht ein. Die Garne dienen als Festigkeitsträger sowie der Kraftübertragung.

Durch Anlegen eines Innendrucks dehnt sich die schlauchförmige Membran in Umfangsrichtung aus. Daraus entsteht eine Zugkraft und eine Kontraktionsbewegung in Längsrichtung. Die maximal nutzbare Zugkraft steht zu Beginn der Kontraktion zur Verfügung und fällt mit dem Hub ab.



#### Kraftverlauf und Arbeitsbereich



Der Muskel wird in die Länge gezogen, wenn er durch eine äußere Kraft vorgereckt wird. Bei Druckbeaufschlagung erfolgt dagegen eine Kontraktion des Muskels, d. h. seine Länge verkürzt sich.

#### Anwendungsfelder

#### Spannen

- Hohe Kraft bei kleinem Durchmesser
- Schmutzunempfindlich
- Reibungsfreie Bewegung
- Hermetisch dicht

#### Vibrieren und Rütteln

- Frequenz bis 150 Hz
- Amplitude/Frequenz unabhängig einstellbar
- $\bullet \;\; {\sf Schmutzunempfindlich}$

#### Pneumatische Feder

- Einstellbare Federkraft
- Reibungsfreie Bewegung
- Hermetisch dicht
- Handhabungsfreundlich

#### Weitere

- Positionieren über Druck
- Hohe Beschleunigung einer Masse

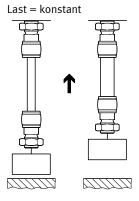
#### Merkmale

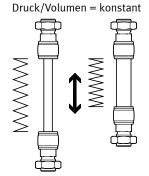
#### Fluidic Muscle DMSP, mit gepresster Anbindung



Beim DMSP ist die Membran über eine Hülse verpresst und die Adapter sind integriert.

#### Nennlänge


Im drucklosen unbelasteten Zustand wird die Nennlänge des Pneumatischen Muskels definiert. Sie entspricht der zwischen den Anbindungen liegenden, sichtbaren Membranlänge (→ Seite 16).


#### Einfachwirkender AktuatorAuslegungsbeispiele → Seite 20

Im einfachsten Fall arbeitet der Pneumatische Muskel als einfachwirkender Aktuator gegen eine mechanische Feder bzw. eine Last. Durch die mechanische Feder wird der Muskel im expandierten, drucklosen Zustand aus seiner Ruhelage heraus vorgereckt. Ideal: 0,5% der Nennlänge. Dieser Betriebszustand ist hinsichtlich der technischen Eigenschaften des Muskels ideal: Im drucklosen Zustand wird die Membran nicht gestaucht. Bei Druckbeaufschlagung erreicht ein auf diese Art vorgereckter Muskel maximale Kräfte bei optimaler Dynamik und geringstem Luftverbrauch.

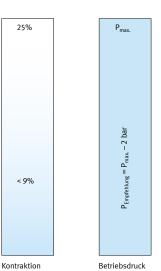
Der effektivste Arbeitsbereich liegt bei Kontraktionen unter 9%. Je geringer der Kontraktionsgrad des Pneumatischen Muskels gewählt wird, umso effektiver arbeitet er.

Der Muskel verhält sich bei Änderung einer äußeren Kraft wie eine Feder: Er folgt der Krafteinwirkung. Beim Muskel kann sowohl die Vorspannkraft dieser "pneumatischen Feder" als auch ihre Federsteifigkeit beeinflusst werden. Der Muskel kann in seiner Feder-Funktion mit konstantem Druck oder mit konstantem Volumen betrieben werden. Es ergeben sich unterschiedliche Federkennlinien; man kann so die Federwirkung optimal auf die Aufgabenstellung anpassen.





### - 🛔 - Hinweis


Wird der Muskel mit Druck beaufschlagtund das Volumen abgesperrt, kann sich der Druck im Muskel bei Veränderung der äußeren Kraft stark erhöhen.

#### Merkmale

#### Auslegung

Der einfachste und sicherste Weg zu einer korrekten Auslegung erfolgt über die Fachabteilung "Membrane Technologies" bei Festo. Ansonsten steht Ihnen zur Auslegung des Pneumatischen Muskels eine Berechnungssoftware zur Verfügung. Für eine Abschätzung können Sie auch die Kraft-Weg-Diagramme verwenden.

Die Auslegung des Pneumatischen Muskels wird anhand von Beispielen erläutert ightharpoonup Seite 20







ungsablauf Fr



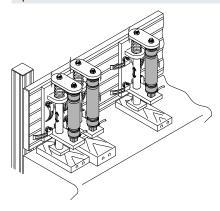
#### Hinweis

Benötigen Sie technische Unterstützung? Wir helfen gerne bei Ihrer Auslegung!

Membrane Technologies

→ membrantechnologie@festo.com

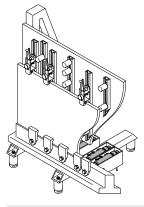



#### Hinweis

- Knickung, Stauchung und Torsion sind nicht zulässig
  - → führt zur Zerstörung der Membran
- Vorreckung bis 0,5% beugt Knickung und Stauchung vor
- Drucklosen Zustand verhindern
  - → Restdruck bis 0,5 bar

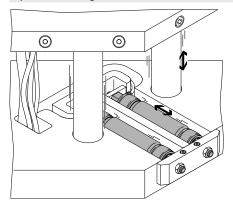
#### Erfolgreiche Anwendungsfelder Spannen

- Hohe Kraft bei kleinem Durchmesser
- Schmutzunempfindlich
- Reibungsfreie Bewegung
- Hermetisch dicht


#### Spannen von Werkstücken



Hohe Kräfte bei kleinem Durchmesser? Für den Pneumatischen Muskel kein Problem.

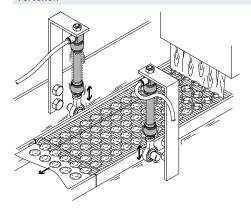

Er kann aufgrund seines kleinen Durchmessers bei engsten Platzverhältnissen eingebaut und verwendet werden, z.B. beim Spannen von Werkstücken. Er verfügt über eine 10fach höhere Anfangskraft gegenüber einem konventionellen Pneumatikzylinder.

#### Spannen von Blechen



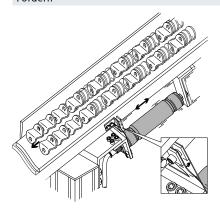
Der Pneumatische Muskel ermöglicht ein einfaches Spannen von großen und unhandlichen Werkstücken, wie Platten, Wände, Seitenteile, welche mechanisch bearbeitet werden (Drehen, Bohren, Fräsen) Hierbei kommen die herausragenden Eigenschaften des Muskels, wie hohe Kraft bei kleinem Durchmesser, reibungsfreie und damit ruckfreie Bewegungen, Unempfindlichkeit gegenüber Schmutz (Späne, Abrieb) und seiner hermetisch dichten Bauweise, zum Tragen.

#### Spannen von Fügeteilen



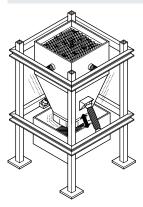

Bei Fügeprozessen, wie sie z. B. in Schweißmaschinen stattfinden, werden die zu verschweißenden Komponenten während des Fügevorgangs vom Pneumatischen Muskel gehalten. Auch auf diesem Gebiet kann der Muskel seine hohe Kraft bei kleinem Durchmesser ausspielen.

#### Erfolgreiche Anwendungsfelder Vibrieren und Rütteln


- Frequenz bis 150 Hz
- Amplitude/Frequenz unabhängig einstellbar
- Schmutzunempfindlich

#### Verteilen



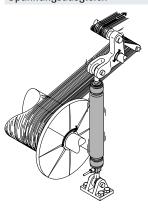

Beim Aufbringen von viskosen Beschichtungsmitteln auf eine feste Trägersubstanz wird, um ein gleichmäßiges Verteilen über die Oberfläche zu gewährleisten, eine vibrierende Unterlage benötigt. Bei Hüben unter 1 mm können mit dem Pneumatischen Muskel Taktfrequenzen bis 150 Hz erreicht werden.

#### Fördern



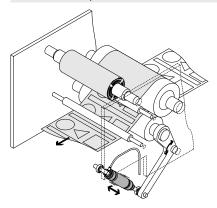
Zum Transportieren oder Ausrichten von Teilen ist der Pneumatische Muskel sehr gut geeignet. Amplitude und Taktfrequenz können einfach und unabhängig voneinander eingestellt werden. Mit dieser Flexibilität des Muskels lässt sich für jeden Förderprozess die optimale Fördergeschwindigkeit der Teile einstellen.

#### Lösen



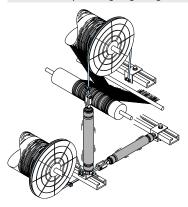

In Vorratsspeichern oder Silos treten beim Zuführen oft Probleme durch Bildung einer sogenannten Gutbrücke auf. In der Praxis kommen, um eine auftretende Brückenbildung zu vermeiden, Austragshilfen, wie Rüttler oder Klopfer zum Einsatz. Diese Funktion kann mit Hilfe des Pneumatischen Muskels realisiert werden. Die Frequenz ist dabei unabhängig von der Amplitude stufenlos bis 150 Hz einstellbar. So ist ein kontinuierlicher Förderprozess gewährleistet.

#### Erfolgreiche Anwendungsfelder Pneumatische Feder


- Einstellbare Federkraft
- Reibungsfreie Bewegung
- Hermetisch dicht
- Handhabungsfreundlich

#### Spannungsausgleich

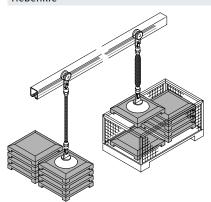



In allen Anwendungen, bei denen Fäden, Folien, Papier oder Bänder über Rollen transportiert oder auf und abgewickelt werden führen zu hohe Spannungen (Spannungsspitzen) bzw. zum Reißen des transportierten Endlosmaterials. Der Pneumatische Muskel kann aufgrund seiner einstellbaren Federkraft und der reibungsfreien Bewegung diese Spannungen aufnehmen. Der Muskel zeichnet sich durch einfache Verstellung der Federhärte über den Druck und damit mit seiner Handhabungsfreundlichkeit aus. Eine mechanische Feder bzw. Gewichte müssten bei Änderungen im Prozess ausgewechselt werden. Vorhandene Lösungen mit Massen und mechanischen Federn können hervorragend durch den Pneumatischen Muskel ersetzt werden.

#### Einstellbarer Anpressdruck

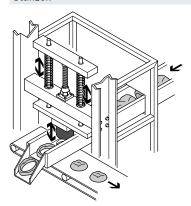


Hervorragend eignet sich der Pneumatische Muskel zum Andrücken von Walzen. Über den Betriebsdruck kann der Anpressdruck variiert werden. Aufgrund der Bauweise kommt es zu keinen festsitzenden Bauteilen und somit zu keinen Kraftspitzen. Der Pneumatische Muskel ist hermetisch dicht und kann von der Druckluftversorgung getrennt werden. Trotzdem erfüllt er weiterhin seine Funktion.


#### Bremse für Spannungsregelung

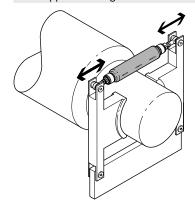


Die Federeigenschaften des Pneumatischen Muskels eignen sich sehr gut zur Regelung der Fadenspannung beim Abwickeln von Fäden. Die Spannung des Fadens ist immer so groß, wie sie für den jeweiligen Prozess benötigt wird. Damit steht immer die optimale Fadenspannung zur Verfügung, wodurch eine größere Schonung der Fäden erzielt und dem Verschleiß aller Bauteile entgegengewirkt wird.


#### Weitere Anwendungsmöglichkeiten

Hebehilfe




Realisieren von Zwischenpositionen? Per Druckregelung ganz einfach: Durch Be oder Entlüften des Muskels via Handhebelventil können die Werkstücke ganz nach Wunsch angehoben oder gesenkt werden. Muskellängen bis 9 m machen vielfältige Einsatzvarianten möglich.

#### Stanzen

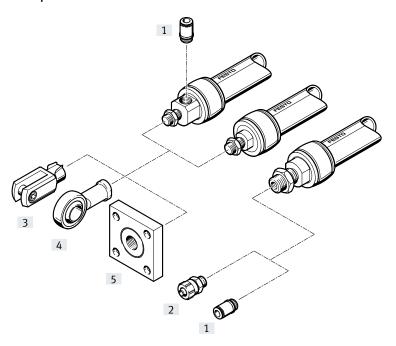


Mit dem Muskel sind sehr hohe Taktraten erreichbar. Einerseits aufgrund seines geringen Gewichts. Andererseits, weil er ohne bewegliche Teile wie z.B. einem Kolben auskommt. Der einfache Aufbau – ein Muskel über zwei Federn vorgespannt – ersetzt ein kompliziertes Kniehebel-Spannsystem mit Zylindern.

#### Notstoppeinrichtung



In Einsatzbereichen, die schnelle Reaktionen erfordern, setzt der Pneumatische Muskel Maßstäbe. Bei der Notstoppeinrichtung für Walzen wird neben Schnelligkeit auch eine hohe Anfangskraft gefordert. Gefahren für den Bediener können damit bei Störfällen verhindert werden.


### Lieferübersicht

| Funktion     | Ausführung                | Innen-Ø<br>[mm] | Nennlänge<br>[mm] | Hubkraft<br>[N] |
|--------------|---------------------------|-----------------|-------------------|-----------------|
| einfachwir-  | Fluidic Muscle mit gepres | ster Anbindung  |                   |                 |
| kend ziehend |                           | 5               | 30 1000           | 0 140           |
|              |                           | 10              | 40 9000           | 0 630           |
|              |                           | 20              | 60 9000           | 0 1500          |
|              |                           | 40              | 120 9000          | 0 6000          |

| Innen-Ø<br>[mm]                         | Max. zulässige<br>Vorreckung | Max. zulässige<br>Kontraktion | Betriebsdruck<br>[bar] | → Seite/Internet |
|-----------------------------------------|------------------------------|-------------------------------|------------------------|------------------|
| Fluidic Muscle mit gepresster Anbindung |                              |                               |                        |                  |
| 5                                       | 1% der Nennlänge             | 20% der Nennlänge             | 0 6                    | 10               |
| 10                                      | 3% der Nennlänge             | 25% der Nennlänge             | 08                     |                  |
| 20                                      | 4% der Nennlänge             | 25% der Nennlänge             | 06                     |                  |
| 40                                      | 5% der Nennlänge             | 25% der Nennlänge             | 06                     |                  |

### Fluidic Muscle DMSP

### Peripherieübersicht



| Zub | ehör                           |                                                                |          |    |    |    |                  |
|-----|--------------------------------|----------------------------------------------------------------|----------|----|----|----|------------------|
|     |                                | Beschreibung                                                   | Baugröße |    |    |    | → Seite/Internet |
|     |                                |                                                                | 5        | 10 | 20 | 40 |                  |
| [1] | Steckverschraubungen<br>QSM/QS | zum Anschluss von außentolerierten Druckluftschläuchen         | •        | •  | •  | •  | qs               |
| [2] | Schnellverschraubungen<br>CK   | zum Anschluss von innentolerierten Druckluftschläuchen         | _        | -  | •  | •  | ck               |
| [3] | Gabelkopf<br>SG                | lässt eine Schwenkbewegung des Fludic Muscle in einer Ebene zu | •        | •  | •  | •  | 19               |
| [4] | Gelenkkopf<br>SGS              | mit sphärischer Lagerung                                       | •        | •  | •  | •  | 19               |
| [5] | Kupplungsstücke<br>KSZ         | für den Ausgleich von Radialabweichungen                       | •        | •  | •  | •  | 19               |
|     | Kupplungsstücke<br>KSG         | für den Ausgleich von Radialabweichungen                       | _        | •  | •  | •  | 19               |

### Typenschlüssel

| 001  | Baureihe                              |  |
|------|---------------------------------------|--|
| DMSP | Fluidic Muscle, einfachwirkendziehend |  |
| 002  | Baugröße                              |  |
| 5    | 5                                     |  |
| 10   | 10                                    |  |
| 20   | 20                                    |  |
| 40   | 40                                    |  |

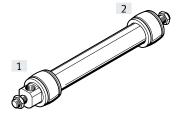
| 003  | Nennlänge [mm] | - |
|------|----------------|---|
| 30   | 30             |   |
| 40   | 40             |   |
| 60   | 60             |   |
| 120  | 120            |   |
| 1000 | 1000           |   |
| 9000 | 9000           |   |

| 004 | Pneumatischer Anschluss/Befestigung 1 | neumatischer Anschluss/Befestigung 1 |  |  |
|-----|---------------------------------------|--------------------------------------|--|--|
| RM  | Radial/Aussengewinde                  | Radial/Aussengewinde                 |  |  |
| AM  | Axial/Aussengewinde                   | Axial/Aussengewinde                  |  |  |
| 1   | T                                     |                                      |  |  |
| 005 | Pneumatischer Anschluss/Befestigung 2 |                                      |  |  |
| RM  | Radial/Aussengewinde                  | Radial/Aussengewinde                 |  |  |
| AM  | Axial/Aussengewinde                   |                                      |  |  |
| CF  | Ohne/Innengewinde                     |                                      |  |  |
| CM  | Ohne/Aussengewinde                    |                                      |  |  |

| 006 | Bedienungsanleitung      |  |
|-----|--------------------------|--|
| DN  | Ohne Bedienungsanleitung |  |
|     |                          |  |

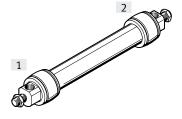
#### Varianten

DMSP-...-RM-CM


- [1] Anschluss radial
- [2] kein Anschluss, mit Außengewinde

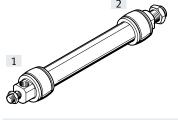


- [1] Anschluss radial
- [2] Anschluss radial


DMSP-...-RM-AM

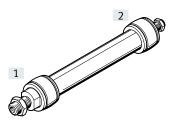
- [1] Anschluss radial
- [2] Anschluss axial




DMSP-...-AM-CM

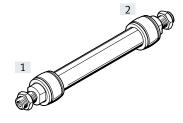
- [1] Anschluss axial
- [2] kein Anschluss, mit Außengewinde

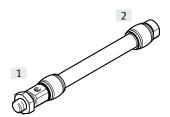


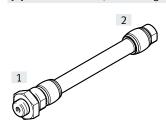

DMSP-...-AM-AM

- [1] Anschluss axial
- [2] Anschluss axial




#### DMSP-...-RM-CF (DMSP-5)


- [1] Anschluss radial
- [2] kein Anschluss, mit Innengewinde




DMSP-...-AM-CF (DMSP-5)

- [1] Anschluss axial
- [2] kein Anschluss, mit Innengewinde







#### Fluidic Muscle DMSP

#### Datenblatt



- Nennlänge 30 ... 9000 mm



-=- Hubkraft 0 ... 6000 N

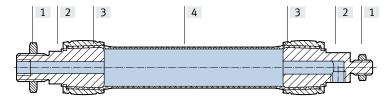


| Allgemeine Technische Daten             |      |                                                                      |                                |                            |                  |  |
|-----------------------------------------|------|----------------------------------------------------------------------|--------------------------------|----------------------------|------------------|--|
| Baugröße                                |      | 5                                                                    | 10                             | 20                         | 40               |  |
| Pneumatischer Anschluss                 |      | M3                                                                   | G1/8                           | G1/4                       | G3/8             |  |
| Konstruktiver Aufbau                    |      | Kontraktionsmembran                                                  |                                |                            |                  |  |
| Funktionsweise                          |      | einfachwirkend ziehend                                               | I                              |                            |                  |  |
| Innen-ø                                 | [mm] | 5                                                                    | 10                             | 20                         | 40               |  |
| Nennlänge                               | [mm] | 30 1000                                                              | 40 9000                        | 60 9000                    | 120 9000         |  |
| Hub                                     | [mm] | 0 200                                                                | 0 2250                         | 0 2250                     | 0 2250           |  |
| Max. Zusatzlast, frei hängend           | [kg] | 5                                                                    | 30                             | 80                         | 250              |  |
| Max. zulässige Vorreckung <sup>1)</sup> |      | 1% der Nennlänge                                                     | 3% der Nennlänge               | 4% der Nennlänge           | 5% der Nennlänge |  |
| Max. zulässige Kontraktion              |      | 20% der Nennlänge                                                    | er Nennlänge 25% der Nennlänge |                            |                  |  |
| Max. zul. Versatz der Anschlüsse        |      | Winkeltoleranz: ≤ 1,0°                                               |                                |                            |                  |  |
|                                         |      | Parallelitätstoleranz: ± 0                                           | 0,5% (bis 400 mm Nennläng      | ge), ≤ 2 mm (ab 400 mm Nen | nlänge)          |  |
| Befestigungsart                         |      | mit Zubehör                                                          |                                |                            |                  |  |
| Einbaulage                              |      | beliebig (treten Querkräfte auf, ist eine externe Führung notwendig) |                                |                            |                  |  |

<sup>1)</sup> Die max. Vorreckung wird beim Anhängen der max. zulässigen frei hängenden Nutzlast erreicht.

| Betriebs- und Umweltbedingungen           | Betriebs- und Umweltbedingungen |                                                            |     |     |     |
|-------------------------------------------|---------------------------------|------------------------------------------------------------|-----|-----|-----|
| Baugröße                                  |                                 | 5                                                          | 10  | 20  | 40  |
| Betriebsdruck                             | [bar]                           | 06                                                         | 0 8 | 0 6 | 0 6 |
| Betriebsmedium                            |                                 | Druckluft nach ISO 8573-1:2010 [7:-:-]                     |     |     |     |
| Hinweis zum Betriebs-/Steuermedium        |                                 | geölter Betrieb möglich (im weiteren Betrieb erforderlich) |     |     |     |
| Umgebungstemperatur                       | [°C]                            | -5 +60                                                     |     |     |     |
| Korrosionsbeständigkeit KBK <sup>1)</sup> |                                 | 2                                                          |     |     |     |
| Zulassung                                 |                                 | TÜV                                                        |     |     |     |

<sup>1)</sup> Korrosionsbeständigkeitsklasse KBK 2 nach Festo Norm FN 940070 Mäßige Korrosionsbeanspruchung. Innenraumanwendung bei der Kondensation auftreten darf. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die in direktem Kontakt zur umgebenden industrieüblichen Atmosphäre stehen.


| Kräfte [N] bei max. zulässigem Betriebsdruck |     |     |      |      |
|----------------------------------------------|-----|-----|------|------|
| Baugröße                                     | 5   | 10  | 20   | 40   |
| Theoretische Kraft <sup>1)</sup>             | 140 | 630 | 1500 | 6000 |

<sup>1)</sup> Bei minimaler Nennlänge reduziert sich die Kraft um ca. 10%.

| Gewichte [g]                   |                              |    |     |     |  |
|--------------------------------|------------------------------|----|-----|-----|--|
| Baugröße                       | 5                            | 10 | 20  | 40  |  |
| Produktgewicht bei 0 m Länge   | Produktgewicht bei 0 m Länge |    |     |     |  |
| DMSPRM-CM                      | 10                           | 58 | 169 | 675 |  |
| DMSPRM-RM                      | 11                           | 66 | 182 | 707 |  |
| DMSPRM-AM                      | 12                           | 75 | 202 | 767 |  |
| DMSPAM-CM                      | 12                           | 66 | 189 | 735 |  |
| DMSPAM-AM                      | 14                           | 83 | 222 | 827 |  |
| DMSPRM-CF                      | 7                            | -  | _   | _   |  |
| DMSPAM-CF                      | 9                            | _  | _   | _   |  |
| Gewichtszuschlag pro 1 m Länge | 27                           | 94 | 178 | 340 |  |

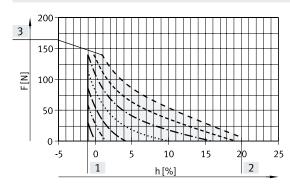
#### Werkstoffe

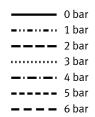
Funktionsschnitt



| Pneı | umatischer Muskel |                                           |
|------|-------------------|-------------------------------------------|
| [1]  | Mutter            | Stahl, verzinkt                           |
| [2]  | Flansch           | Aluminium-Knetlegierung, farblos eloxiert |
| [3]  | Hülse             | Aluminium-Knetlegierung, farblos eloxiert |
| [4]  | Membran           | AR, CR                                    |
|      | Werkstoff-Hinweis | RoHS konform                              |
|      |                   | Kupfer- und PTFE-frei                     |
|      |                   | LABS-haltige Stoffe enthalten             |

#### Zulässige Kraft F [N] in Abhängigkeit der Kontraktion h [%] der Nennlänge

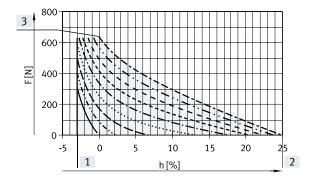

Kraft-Weg-Diagramme und Auslegungsbereiche

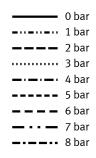

Beim Einsatz des Pneumatischen Muskels sind die in den Technischen Daten angegebenen Grenzen einzuhalten. Aus den unten dargestellten Diagrammen ergibt sich durchmesserabhängig der Einsatzbereich des Pneumatischen Muskels innerhalb folgender Grenzlinien.

#### Anwendung der Diagramme

- Die obere Begrenzung der grauen Fläche beschreibt die maximal zulässige Kraft.
- Die rechte Begrenzungskurve der grauen Fläche beschreibt den maximal zulässigen Betriebsdruck.
- Die rechte senkrechte Begrenzung der grauen Fläche beschreibt die maximal zulässige Kontraktion.
- Die linke Begrenzung der grauen Fläche beschreibt die Belastungsgrenze des Muskels durch die maximal zulässige Vorreckung.

#### Arbeitsbereich DMSP-5-100N-...



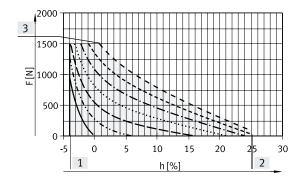




#### Auslegungsbeispiele → Seite 20

- [1] Max. zul. Vorreckung
- [2] Max. zul. Kontraktion
- [3] Theoretische Kraft (140 N) bei max. Betriebsdruck
- Zulässiger Arbeitsbereich

#### Arbeitsbereich DMSP-10-100N-...



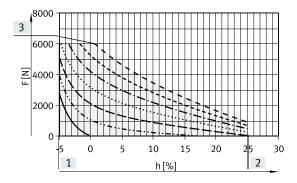



#### Auslegungsbeispiele → Seite 20

- [1] Max. zul. Vorreckung
- [2] Max. zul. Kontraktion
- [3] Theoretische Kraft (630 N) bei max. Betriebsdruck
- Zulässiger Arbeitsbereich

#### Zulässige Kraft F[N] in Abhängigkeit der Kontraktion h[%] der Nennlänge

Arbeitsbereich DMSP-20-200N-...






#### Auslegungsbeispiele → Seite 20

- [1] Max. zul. Vorreckung
- [2] Max. zul. Kontraktion
- [3] Theoretische Kraft (1500 N) bei max. Betriebsdruck
  - Zulässiger Arbeitsbereich

#### Arbeitsbereich DMSP-40-400N-...





#### Auslegungsbeispiele → Seite 20

- [1] Max. zul. Vorreckung
- [2] Max. zul. Kontraktion
- [3] Theoretische Kraft (6000 N) bei max. Betriebsdruck
  - Zulässiger Arbeitsbereich

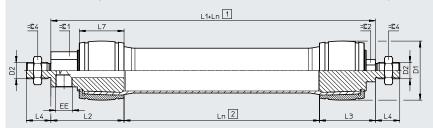
### Hinweis

Der tatsächliche Wert der Kraft in Abhängigkeit von der Kontraktion kann aufgrund der Produkteigenschaften und der vorliegenden Umgebungsbedingungen abweichen.

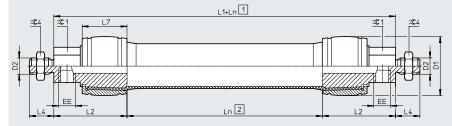
Die Abweichung kann durch eine Druckanpassung bis zum maximal zulässigen Betriebsdruck ausgeglichen werden.

Der einfachste und sicherste Weg zu einer korrekten Auslegung erfolgt über die Fachabteilung "Membrane Technologies" bei Festo. Wir haben die Möglichkeit alle für Ihre Anwendung entscheidenden Parameter zu berücksichtigen.

Wir helfen gerne bei Ihrer Auslegung!


Membrane Technologies

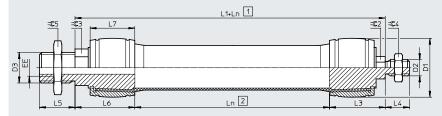
→ membrantechnologie@festo.com


#### Abmessungen

Download CAD-Daten → www.festo.com

DMSP-...-RM-CM – pneumatischer Anschluss radial – kein Anschluss, mit Außengewinde




DMSP-...-RM-RM – pneumatischer Anschluss radial – pneumatischer Anschluss radial



DMSP-...-AM-RM – pneumatischer Anschluss axial – pneumatischer Anschluss radial



DMSP-...-AM-CM – pneumatischer Anschluss axial – kein Anschluss, mit Außengewinde

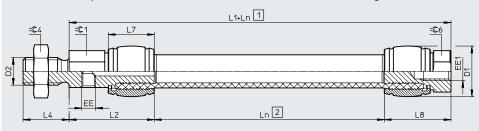


- [1] Einbaulänge
- [2] Nennlänge

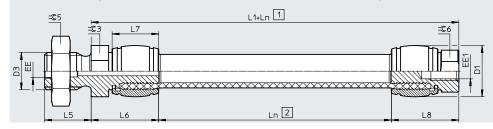
| Baugröße | D1   | D2       | D3      | EE <sup>2)</sup> | Ln <sup>1)</sup> |      | L1    |       |       |       | L2   |
|----------|------|----------|---------|------------------|------------------|------|-------|-------|-------|-------|------|
|          | max. |          |         |                  | min.             | max. | RM-CM | RM-RM | AM-RM | AM-CM |      |
| 5        | 11   | M6       | M8      | M3               | 30               | 1000 | 33    | 37    | 33    | 29    | 18,5 |
| 10       | 22   | M8       | M16x1,5 | G1/8             | 40               | 9000 | 62    | 72    | 63    | 53    | 36   |
| 20       | 35   | M10x1,25 | M20x1,5 | G1/4             | 60               |      | 95    | 113   | 97    | 79    | 56,5 |
| 40       | 57   | M16x1,5  | M30x1,5 | G3/8             | 120              |      | 127   | 144   | 131   | 114   | 72   |

| Baugröße | L3   | L4 | L5 | L6   | L7 | =©1 <sup>2)</sup> | =©2 <sup>2)</sup> | =©3 <sup>2)</sup> | <b>=</b> ©4 | <b>=</b> ©5 |
|----------|------|----|----|------|----|-------------------|-------------------|-------------------|-------------|-------------|
| 5        | 14,5 | 10 | 10 | 14,5 | 10 | 8                 | 8                 | 10                | 13          | 13          |
| 10       | 26   | 15 | 16 | 27   | 19 | 17                | 10                | 17                | 13          | 24          |
| 20       | 38,5 | 20 | 18 | 40,5 | 30 | 19                | 12                | 20                | 17          | 30          |
| 40       | 55   | 24 | 35 | 59   | 44 | 30                | 19                | 30                | 24          | 46          |

- 1) Toleranz < 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.
- 2) Bei der parallelen Ausrichtung der Schlüsselflächen von linker und rechter Anbindungsseite kann es produktionsbedingt zu Abweichungen kommen.


#### Abmessungen

#### Download CAD-Daten → www.festo.com


DMSP-...-AM-AM – pneumatischer Anschluss axial – pneumatischer Anschluss axial



DMSP-...-RM-CF – pneumatischer Anschluss radial – kein Anschluss, mit Innengewinde



DMSP-...-AM-CF – pneumatischer Anschluss axial – kein Anschluss, mit Innengewinde



- [1] Einbaulänge
- [2] Nennlänge

| Baugröße | D1   | D2       | D3      | EE   | EE1 | Li   | 1 <sup>1)</sup> |       | L1    |       | L2   |
|----------|------|----------|---------|------|-----|------|-----------------|-------|-------|-------|------|
|          | max. |          |         |      |     | min. | max.            | AM-AM | RM-CF | AM-CF |      |
| 5        | 11   | M6       | M8      | М3   | M4  | 30   | 1000            | 29    | 33    | 29    | 18,5 |
| 10       | 22   | M8       | M16x1,5 | G1/8 | -   | 40   | 9000            | 54    | _     | -     | 36   |
| 20       | 35   | M10x1,25 | M20x1,5 | G1/4 | -   | 60   |                 | 81    | _     | -     | 56,5 |
| 40       | 57   | M16x1,5  | M30x1,5 | G3/8 | -   | 120  |                 | 118   | -     | -     | 72   |

| Baugröße | L4 | L5 | L6   | L7 | L8   | =©1 <sup>2)</sup> | =©3 <sup>2)</sup> | =64 | =@5 | <b>=</b> ©6 |
|----------|----|----|------|----|------|-------------------|-------------------|-----|-----|-------------|
| 5        | 10 | 10 | 14,5 | 10 | 14,5 | 8                 | 10                | 13  | 13  | 8           |
| 10       | 15 | 16 | 27   | 19 | -    | 17                | 17                | 13  | 24  | _           |
| 20       | 20 | 18 | 40,5 | 30 | -    | 19                | 20                | 17  | 30  | _           |
| 40       | 24 | 35 | 59   | 44 | -    | 30                | 30                | 24  | 46  | -           |

- 1) Toleranz < 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.
- 2) Bei der parallelen Ausrichtung der Schlüsselflächen von linker und rechter Anbindungsseite kann es produktionsbedingt zu Abweichungen kommen.

| Durchmesseraufweitung bei maximaler Kontraktion |    |    |    |    |  |  |  |
|-------------------------------------------------|----|----|----|----|--|--|--|
| Baugröße                                        | 5  | 10 | 20 | 40 |  |  |  |
| [mm]                                            | 12 | 24 | 40 | 80 |  |  |  |

### Bestellangaben – Produktbaukasten

| <b>Bestelltabelle</b><br>Baugröße |      | 5                                                                | 10                                                                | 20                              | 40             | Bedin-<br>gungen | Code | Eintrag<br>Code |
|-----------------------------------|------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|----------------|------------------|------|-----------------|
| Baukasten-Nr.                     |      | 3733012                                                          | 541403                                                            | 541404                          | 541405         |                  |      |                 |
| Funktion                          |      | Fluidic Muscle mit ge                                            | presster Anbindung                                                |                                 |                |                  | DMSP | DMSP            |
| Baugröße                          | [mm] | 5                                                                | 10                                                                | 20                              | 40             |                  |      |                 |
| Nennlänge                         | [mm] | 30 1000                                                          | 40 9000                                                           | 60 9000                         | 120 9000       |                  | N    | N               |
| Erste Anbindung                   |      | Radial, Außengewind<br>Befestigungsgewinde<br>M6 / M3            | e<br>- / Druckluftanschluss<br>  M8 / G1/8                        | M16x1,5 / G3/8                  |                | -RM              |      |                 |
|                                   |      | Axial, Außengewinde<br>Befestigungsgewinde                       |                                                                   | M10x1,25 / G1/4  M20x1,5 / G1/4 | M30x1,5 / G3/8 |                  | -AM  |                 |
| Zweite Anbindung                  |      | M8 / M3 Geschlossen, Außeng Befestigungsgewinde M6               |                                                                   | -CM                             |                |                  |      |                 |
|                                   |      | Geschlossen, Innen-<br>gewinde<br>Befestigungs-<br>gewinde<br>M4 | M8<br>-                                                           | M10x1,25                        | M16x1,5        |                  | -CF  |                 |
|                                   |      | Radial, Außengewind<br>Befestigungsgewinde<br>M6 / M3            | e<br>e / Druckluftanschluss<br>  M8 / G1/8                        | M10x1,25 / G1/4                 | M16x1,5 / G3/8 |                  | -RM  |                 |
|                                   |      | Axial, Außengewinde Befestigungsgewinde / Druckluftanschluss     |                                                                   |                                 |                |                  | -AM  |                 |
|                                   |      | M8 / M3                                                          | M16x1,5 / G1/8                                                    | M20x1,5 / G1/4                  | M30x1,5 / G3/8 |                  |      |                 |
| Bedienungsanleitung               |      | Standard<br>ausdrücklicher Verzic                                | ther Verzicht auf die Bedienungsanleitung, weil bereits vorhanden |                                 |                |                  |      |                 |

| Bestellangaben – S | estellangaben – Standardausführungen |                      |                           |           |                    |  |  |  |  |
|--------------------|--------------------------------------|----------------------|---------------------------|-----------|--------------------|--|--|--|--|
| für Baugröße       | Nennlänge                            | Erste Anbindung      | Zweite Anbindung          | Teile-Nr. | Тур                |  |  |  |  |
| [mm]               | [mm]                                 |                      |                           |           |                    |  |  |  |  |
| 5                  | 50                                   | Außengewinde, radial | Außengewinde, geschlossen | 8114532   | DMSP-5-50N-RM-CM   |  |  |  |  |
| 10                 | 80                                   |                      |                           | 8114536   | DMSP-10-80N-RM-CM  |  |  |  |  |
| 20                 | 100                                  |                      |                           | 8114534   | DMSP-20-100N-RM-CM |  |  |  |  |
| 40                 | 120                                  |                      |                           | 8114530   | DMSP-40-120N-RM-CM |  |  |  |  |

### Zubehör

| Bestellangabe  | Bestellangaben |           |                           |  |  |  |  |  |  |
|----------------|----------------|-----------|---------------------------|--|--|--|--|--|--|
| Benennung      | für Baugröße   | Teile-Nr. | Тур                       |  |  |  |  |  |  |
| Gelenkkopf SGS |                |           |                           |  |  |  |  |  |  |
|                | 5              | 9254      | SGS-M6                    |  |  |  |  |  |  |
|                | 10             | 9255      | SGS-M8                    |  |  |  |  |  |  |
|                | 20             | 9261      | SGS-M10x1,25              |  |  |  |  |  |  |
|                | 40             | 9263      | SGS-M16x1,5 <sup>1)</sup> |  |  |  |  |  |  |
| Gabelkopf SG   |                |           |                           |  |  |  |  |  |  |
|                | 5              | 3110      | SG-M6                     |  |  |  |  |  |  |
|                | 10             | 3111      | SG-M8                     |  |  |  |  |  |  |
|                | 20             | 6144      | SG-M10x1,25               |  |  |  |  |  |  |
|                | 40             | 6146      | SG-M16x1,5 <sup>1)</sup>  |  |  |  |  |  |  |

|   |                   | Da           | tenblätter → | Internet: kolbenstangenaufsatz |
|---|-------------------|--------------|--------------|--------------------------------|
|   | Benennung         | für Baugröße | Teile-Nr.    | Тур                            |
|   | Kupplungsstück    | KSG          |              |                                |
|   | 6                 | 5            | _            |                                |
|   | (@)°              | 10           | _            |                                |
|   |                   | 20           | 32963        | KSG-M10x1,25                   |
|   | <b>V</b>          | 40           | 32965        | KSG-M16x1,5                    |
| - | Kommlon maskii al | . VC7        |              | -                              |
|   | Kupplungsstück    | K KSZ        | 1            | 1                              |
|   | 0                 | 5            | 36123        | KSZ-M6                         |
|   | 6                 | 10           | 36124        | KSZ-M8                         |
|   |                   | 20           | 36125        | KSZ-M10x1,25                   |
|   |                   | 40           | 36127        | KSZ-M16x1,5                    |



1) Bei dynamischer Belastung des DMSP-40 ergeben sich Einschränkungen der technischen Daten durch das Zubehör.

Grundlage: Nennlast, Reibmoment bei  $\mu = 0,2$ :

- Dauerfestigkeit bei 6000 N: 1 Mio. Lastspiele (Höhere Werte auf Anfrage)

- Dauerfestigkeit bei 4000 N: 10 Mio. Lastspiele

### Auslegung

#### Beispiel 1

Anheben einer konstanten Last

Mit Hilfe des Muskels soll eine konstante Last von 60 kg, kräftefrei von einer Grundfläche aus, angekoppelt und über einen Weg von 10 mm angehoben werden. Aus der Druckluftversorgung stehen max. 6 bar zur Verfügung.

Gesucht wird die Baugröße (Durchmesser und Nennlänge) des Pneumatischen Muskels.



#### Hinweis

Der einfachste und sicherste Weg zu einer korrekten Auslegung erfolgt über die Fachabteilung "Membrane Technologies" bei Festo.

Wir haben die Möglichkeit alle für Ihre Anwendung entscheidenden Parameter zu berücksichtigen.

Wir helfen gerne bei Ihrer Auslegung!

Membrane Technologies

→ membrantechnologie@festo.com

| Rahmenbedingungen                            |       | Werte   |
|----------------------------------------------|-------|---------|
| Erforderliche Kraft in der Ruhelage          | [N]   | 0       |
| Erforderlicher Hub                           | [mm]  | 10      |
| Erforderliche Kraft im kontrahiertem Zustand | [N]   | ca. 600 |
| Max. möglicher Betriebsdruck                 | [bar] | 6       |


#### Wahl der Parameter

#### Günstiger Bereich



Lösungsweg







| Schritte                                               | Auswahl        | Eingabe-Parameter | Ergebnis |
|--------------------------------------------------------|----------------|-------------------|----------|
| Schritt 1:                                             |                |                   |          |
| Berechnung der Nennlänge<br>(Hub 10 mm/Kontraktion 5%) | 200 mm         |                   |          |
| Wahl Betriebsdruck                                     | 4 bar          |                   |          |
| (p <sub>max.</sub> – 2 bar)                            |                |                   |          |
| Schritt 2:                                             |                |                   |          |
| Eingabe der Werte im Enginee-                          | Nennlänge:     | 200 mm            |          |
| ring Tool                                              | Hub:           | 10 mm             |          |
|                                                        | Betriebsdruck: | 4 bar             |          |
|                                                        | Baugröße:      | 20 mm             |          |
| Zwischenergebnis Kraft                                 |                |                   | 674 N    |
| Schritt 3:                                             |                |                   |          |
| Anpassung der Eingabewerte                             | Betriebsdruck: | 3,7 bar           |          |
| Ergebnis:                                              |                |                   | 609 N    |
| _                                                      |                |                   |          |

### Auslegung

#### Beispiel 2

Einsatz als Zugfeder

In diesem Beispiel soll der Muskel als Zugfeder eingesetzt werden. Gesucht wird die Baugröße (Durchmesser und Nennlänge) des Pneumatischen Muskels.

### Hinweis

Der einfachste und sicherste Weg zu einer korrekten Auslegung erfolgt über die Fachabteilung "Membrane Technologies" bei Festo.

Wir haben die Möglichkeit alle für Ihre Anwendung entscheidenden Parameter zu berücksichtigen.

Wir helfen gerne bei Ihrer Auslegung!

Membrane Technologies

→ membrantechnologie@de.festo.com

Für die eigene Auslegung ist die Empfehlung zu beachten: Kontraktion < 9%, Betriebsdruck  $p_{Empfehlung} = p_{max.} - 2$  bar, siehe Wahl der Parameter

| Rahmenbedingungen                            |       | Werte |
|----------------------------------------------|-------|-------|
| Erforderliche Kraft in expandiertem Zustand  | [N]   | 2000  |
| Erforderliche Kraft im kontrahiertem Zustand | [N]   | 1000  |
| Erforderlicher Hub (Federlänge)              | [mm]  | 50    |
| Betriebsdruck                                | [bar] | 2     |

#### Lösungsweg

Schritt 1

Baugröße des Muskels festlegen

Festlegen des geeigneten Muskeldurchmessers anhand der erforderlichen Kraft. Die erforderliche Kraft beträgt 2000 N, deshalb wird ein DMSP-40-... gewählt.

Schritt 2 Der Lastpunkt 1 wird in das Kraft-Weg-Diagramm des DMSP-40-... eingetragen. Eintragen von Lastpunkt 1 Kraft F = 2000 N

Druck p= 2 bar

Schritt 3 Der Lastpunkt 2 wird in das Kraft-Weg-Diagramm eingetragen.

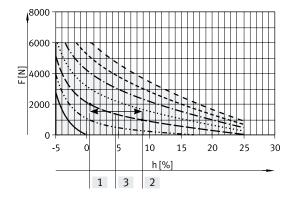
Eintragen von Lastpunkt 2 Kraft F = 1000 N Druck p= 2 bar

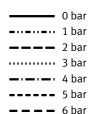
Schritt 4 Die Längenänderung des Muskels wird zwischen den Lastpunkten an der X-Achse (Kontraktion in %) abge-

Ablesen der Längenänderung

Ergebnis: 8,7% Kontraktion.

Schritt 5 Bei einem geforderten Hub von 50 mm ergibt sich die Nennlänge des Muskels dividiert durch die Kontraktion


Errechnung der Nennlänge in %.


Ergebnis: 50 mm / 8,7% ~ 575 mm.

Schritt 6 Die Nennlänge des zu bestellenden Muskels beträgt 575 mm.

**Ergebnis** Für den Einsatz als Zugfeder mit einer Kraft von 2000 N und einem Federweg von 50 mm wird ein DMSP-40-

575N-... benötigt.





- [1] Lastpunkt 1
- [2] Lastpunkt 2
- [3] Längenänderung = 8,7%