

Merkmale

Auf einen Blick

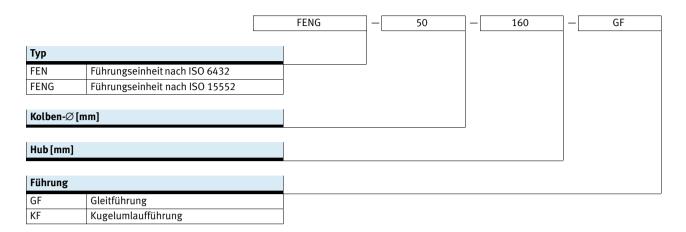
Die Führungseinheiten FEN und FENG werden zur Verdrehsicherung von Normzylindern bei hohen Momenten eingesetzt. Sie bieten hohe Führungsgenauigkeit bei Werkstückhandhabung und anderen Einsatzgebieten. Zur Auswahl stehen zwei Führungsvarianten:

- Gleitführung (GF)
- Kugelumlaufführung (KF)

Kombinationsmöglichkeiten Antrieb/Führungseinheit

Antrieb/ Führungseinheit	DSBC	DSBG	DNC	DSNU
FENG	•	•	•	-
FEN	-	-	-	
→ Seite/Internet	dsbc	dsbg	dnc	dsnu

Positionserkennung


bei Normzylinder DNC: Im eingebauten Zustand ist für die Abfrage der vorderen Endlage ein Befestigungsbausatz erforderlich. Die hintere Endlage ist über die Sensornut direkt abfragbei Normzylinder DSNU: Bei diesen Normzylindern wir zur Abfrage der Endlagen unbedingt ein Befestigungsbausatz benötigt.

Befestigung	sbausätze		
Antrieb	Kolben-∅	Teile-Nr.	Тур
DSNUA	8	175091	SMBR-8-8
	10	175092	SMBR-8-10
	12	175093	SMBR-8-12
	16	175094	SMBR-8-16
	20	175095	SMBR-8-20
	25	175096	SMBR-8-25
DNCA	32, 40	175705	SMB-8-FENG-32/40
	50, 63	175706	SMB-8-FENG-50/63
	80, 100	175707	SMB-8-FENG-80/100

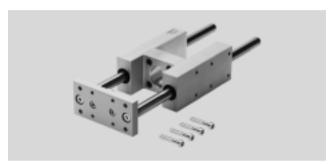
Führungseinheiten FEN/FENG für Normzylinder Typenschlüssel

FESTO

FEN nach ISO 6432

- **D** - Durchmesser 8 ... 25 mm

Hublänge 1 ... 250 mm


Reparaturservice

FENG nach ISO 15552

- **D** - Durchmesser 32 ... 100 mm

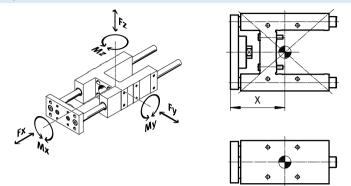
Hublänge 10 ... 500 mm

Allgemeine Technische D	aten										
Тур		FEN				FENG					
Kolben-∅		8, 10	12, 16	20	25	32	40	50	63	80	100
Hub	[mm]	1100	1 200	2 250		10 500					
Konstruktiver Aufbau	ufbau Führung										
Führung											
FEN/FENGGF		Gleitführu	Gleitführung								
FEN/FENGKF		Kugeluml	aufführung	;							
Verschiebekraft		1									
FEN/FENGGF	[N]	15	15	15	15	30	30	50	50	70	70
FEN/FENGKF	[N]	15	15	15	15	15	15	15	15	40	40
Befestigungsart		mit Innengewinde						1			
Einbaulage		beliebig									
Umgebungstemperatur	[°C]	-20 +80) °C								

Gewichte [g] (Berechnungsbeispiel	→ Seite	8)									
Тур	FEN	FEN				FENG					
Kolben-∅	8, 10	12, 16	20	25	32	40	50	63	80	100	
Gleitführung (GF)											
Grundgewicht bei 0 mm Hub	332	490	873	866	1570	2480	4190	5540	10720	13420	
Gewichtszuschlag pro 10 mm Hub	8	12	12	12	17	31	48	48	76	76	
Bewegte Masse bei 0 mm Hub	90	161	269	269	478	782	1414	1720	4955	5935	
Massenzuschlag pro 10 mm Hub	8	12	12	12	17	31	48	48	76	76	
Kugelumlaufführung (KF)											
Grundgewicht bei 0 mm Hub	300	429	828	813	1530	2370	4030	5410	10430	12990	
Gewichtszuschlag pro 10 mm Hub	8	12	12	12	18	32	49	49	77	77	
Bewegte Masse bei 0 mm Hub	90	161	269	269	483	792	1430	1739	4990	5970	
Massenzuschlag pro 10 mm Hub	8	12	12	12	18	32	49	49	77	77	

Werkstoffe

Schwerpunkt der bewegten Masse [mm] (Berechnungsbeispiel → Seite 8)										
Тур	FEN				FENG					
Kolben-∅	8, 10	12, 16	20	25	32	40	50	63	80	100
bei 0 mm Hub	30	40	42	42	43	57	60	69	54	47
Zuschlag pro 10 mm Hub	Ruschlag pro 10 mm Hub 4,9 4,9 4,7 4,7 4,5 4,7 4,6 3,9 3,6									


Funktionsschnitt 1 2 4 200000000 Kugelumlaufführung E Gleitführung

Füh	rungseinheit	FEN/FENGGF	FEN/FENGKF				
1	Jochplatte						
	Kolben-∅ 32 63	Aluminium	Aluminium				
	Kolben-∅ 80, 100	Stahl	Stahl				
2	Kupplung	Stahl	Stahl				
3	Führung	Aluminium	Aluminium				
4	Lager	Sinterbronze	Stahl				
5	Führungsstangen	Stahl	Stahl				
-	Werkstoff-Hinweis	-	Kupfer- und PTFE-frei				
		RoHS konform					

FESTO

Belastungskennwerte für FEN-...-KF/FENG-...-KF

Die angegebenen Kräfte und Momente beziehen sich auf das Führungszentrum.

Wirken gleichzeitig mehrere der unten genannten Kräfte und Momente auf die Führungseinheit ein, muss neben den aufgeführten Maximalbelastungen folgende Gleichung erfüllt werden.

Berechnung des Belastungs-Vergleichsfaktor:

$$f_{v} = \frac{|F_{y,dyn}|}{F_{y,max}} + \frac{|F_{z,dyn}|}{F_{z,max}} + \frac{|M_{x,dyn}|}{M_{x,max}} + \frac{|M_{y,dyn}|}{M_{y,max}} + \frac{|M_{z,dyn}|}{M_{z,max}} \leq 1$$

Abstand X (Berechnungsbeispiel → Seite 8)									
Typ FENKF				FENGKF					
Kolben-∅	8, 10	12, 16	20, 25	32	40	50	63	80	100
Maß X	55	68	69	83	85	99	117	142	145

Max. zulässige Kräfte und Mo	omente									
Тур	FENk	NKF FENGKF								
Kolben-∅	8, 10	12, 16	20, 25	32	40	50	63	80	100	
statisch										
Fy _{max.} /Fz _{max.}	680	830	830	1020	1260	1600	1600	3120	3120	
Mx _{max} .	16	20	24	38	55	83	95	231	268	
My _{max.} /Mz _{max.}	7	12	31	46	65	89	115	259	267	
dynamisch (bei einer Lebensd	auer von 5000 k	m)	_	,	,					
Fy _{max.} /Fz _{max.}	450	520	520	750	1000	1260	1260	2300	2300	
Mx _{max} .	11	12	15	28	44	65	75	170	198	
My _{max.} /Mz _{max.}	5	7	20	34	52	70	90	191	197	

FESTO

Datenblatt

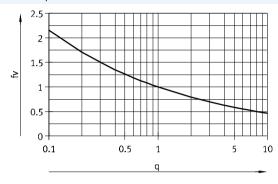
Berechnung der Lebensdauer

Die Lebensdauer der Führung ist abhängig von der Belastung. Um eine annähernde Aussage über die Lebensdauer der Führung zu geben, wird als Kenngröße der Belastungs-Vergleichsfaktor f_{ν} im Bezug auf den Lebensdauer-Quotienten q im nachstehenden Diagramm dargestellt.

Diese Darstellung gibt nur den theoretischen Wert wieder. Bei Belastungs-Vergleichsfaktor f_V größer 1,5 ist unbedingt eine Rücksprache mit ihrem lokalen Ansprechpartner bei Festo notwendig.

Belastungs-Vergleichsfaktor f_v in Abhängigkeit von dem Lebensdauer-Quotienten q

Beispiel

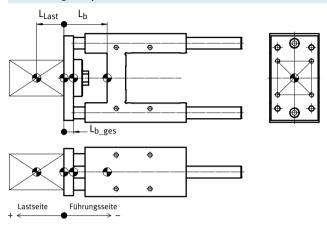

Der Einfluss auf die Lebensdauer, abweichend zur angegebenen Referenz-Lebensdauer, lässt sich über den Lebensdauer-Quotienten q ermitteln:

Gegeben:

Referenz-Lebensdauer = 5000 km Wunsch-Lebensdauer = 3000 km

$$q = \frac{3000 \text{km}}{5000 \text{km}} = 0,6$$

Aus dem Diagramm ergibt sich ein Belastungs-Vergleichsfaktor f_{ν} von 1,2. Dies bedeutet, die zulässige Summenbelastung kann zu 120% ausgeschöpft werden.


Auslegungssoftware PositioningDrives www.festo.com

 $f_v > 1,5$ sind nur theoretische Vergleichswerte.

Datenblatt

Berechnungsbeispiel

L_b = Schwerpunkt bewegte Masse der Führungseinheit

 $L_{Last} = Nutzlastschwerpunkt$

 L_{b_ges} = Schwerpunkt der gesamten bewegten Masse

Längenmaße sind mit Vorzeichen einzusetzen, entsprechend der Abbildung:

 $L_{b_ges} > 0 =$ Schwerpunkt der bewegten Masse liegt auf der Nutzlastseite

 $L_{b_ges} < 0 =$ Schwerpunkt der bewegten Masse liegt auf der Führungsseite

Gegeben:

• Führungseinheit: FENG-32-200-KF

• Hublänge: H = 200 mm

• Nutzlastschwerpunkt: L_{Last} = 15 mm

• Nutzlast: m_{Last} = 5 kg

• Beschleunigungen: $a_x = a_y = 2 \text{ m/s}^2$, $a_z = 0 \text{ m/s}^2$

Gesucht:

Belastungen Fy_{dyn}/Fz_{dyn} und Mx_{dyn}/My_{dyn}/Mz_{dyn}

• Funktionsnachweis bei kombinierter Belastung

Lebensdauererwartung

Lösung:

Bewegte Masse:

$$m_{b \text{ ges}} = m_b + m_{Last}$$
 $(m_b = m_{0b} + H \times m_{Hb})$

Aus Tabelle → Seite 4

 $m_{Ob} = 0,483 \text{ kg}$

 $m_{Hb} = 0.018 \text{ kg}/10 \text{ mm}$

 $m_b = 0.483 \text{ kg} + 200 \text{ mm} \times 0.018 \text{ kg}/10 \text{ mm} = 0.843 \text{ kg}$

 $m_{b_ges} = 0,843 \text{ kg} + 5 \text{ kg} = 5,843 \text{ kg}$

m_b = Bewegte Masse der Führungseinheit

 m_{0b} = Bewegte Masse bei 0 mm Hub

 m_{Hb} = Massenzuschlag pro 10 mm Hub

H = Hublänge

$$\label{eq:loss_loss} L_{b_\text{ges}} = \frac{L_{\text{Last}} \times m_{\text{Last}} + L_{\text{b}} \times m_{\text{b}}}{m_{\text{b}}} \quad (L_{\text{b}} = L_{\text{0b}} + H \times L_{\text{Hb}})$$

Aus Tabelle → Seite 5

 $L_{Ob} = 43 \text{ mm}$

 $L_{Hb} = 4,5 \text{ mm}/10 \text{ mm}$

 $L_b = 43 \text{ mm} + 200 \text{ mm} \times 4.5 \text{ mm}/10 \text{ mm} = 133 \text{ mm}$

$$L_{b_ges} = \frac{(+\ 15\ mm)\ \times\ 5\ kg\ +\ (-\ 133\ mm)\ \times\ 0,843\ kg}{5,843\ kg} =\ -\ 6\ mm$$

L_b = Schwerpunkt bewegte Masse der Führungseinheit

 m_b = Bewegte Masse der Führungseinheit

 L_{Last} = Nutzlastschwerpunkt

 $m_{last} = Nutzlast$

L_{Ob} = Schwerpunkt bewegte Masse bei 0 mm Hub

-Hb = Zuschlag Schwerpunkt bewegte Masse pro 10 mm Hub

Längenmaße sind mit Vorzeichen einzusetzen, entsprechend der Abbildung:

 $L_{b_ges} > 0 =$ Schwerpunkt der bewegten Masse liegt auf der Nutzlastseite

 $L_{b_ges} < 0 =$ Schwerpunkt der bewegten Masse liegt auf der Führungsseite

FESTO

Datenblat

Berechnungsbeispiel

Belastungen Fy_{dyn}/Fz_{dyn} und Mx_{dyn}/My_{dyn}/Mz_{dyn}

$$Fy_{dyn} = m_{b_ges} x a_y = 5,843 kg x 2 m/s^2 = 12 N$$

$$Fz_{dyn} = m_{b_ges} x (g + a_z) = 5,843 \text{ kg } x (9,81 \text{ m/s}^2 + 0 \text{ m/s}^2) = 57 \text{ N}$$

Aus Tabelle → Seite 6

Maß X = 83 mm

$$My_{dyn} = Fz_{dyn} x (Maß X + Hub + L_{b_ges}) = 57 N x (83 mm + 200 mm + (-6 mm)) = 16 Nm$$

$$Mz_{dyn} = Fy_{dyn} x (Maß X + Hub + L_{b_ges}) = 12 N x (83 mm + 200 mm + (-6 mm)) = 3 Nm$$

Funktionsnachweis bei kombinierter Belastung

Max. Werte aus Tabelle → Seite 6

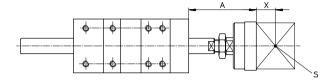
$$Fy_{max} = 750 \text{ N}$$
 $Mx_{max} = 28 \text{ Nm}$

$$Fz_{max} = 750 \text{ N}$$
 $My_{max} = 34 \text{ Nm}$

$$Mz_{max} = 34 \text{ Nm}$$

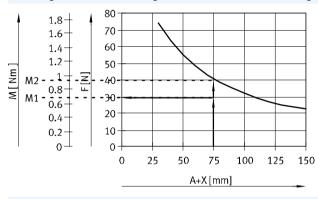
$$f_{v} = \frac{|F_{y,dyn}|}{F_{y,max}} + \frac{|F_{z,dyn}|}{F_{z,max}} + \frac{|M_{x,dyn}|}{M_{x,max}} + \frac{|M_{y,dyn}|}{M_{y,max}} + \frac{|M_{z,dyn}|}{M_{z,max}} \leq 1$$

$$f_{V} = \frac{12~\text{N}}{750~\text{N}} + \frac{57~\text{N}}{750~\text{N}} + \frac{0~\text{Nm}}{28~\text{Nm}} + \frac{16~\text{Nm}}{34~\text{Nm}} + \frac{3~\text{Nm}}{34~\text{Nm}} = 0,7 \leq 1$$

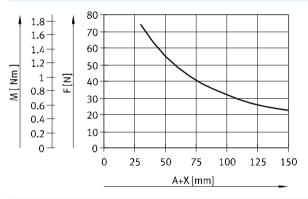

Lebensdauererwartung

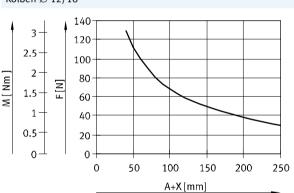
$$L_{calc} = \frac{L_{ref}}{f_{v}^{3}} = \frac{5000 \text{ km}}{0.7^{3}} = 14000 \text{ km}$$

Datenblatt

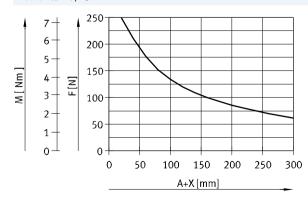

Max. Nutzlast F und Drehmoment M in Abhängigkeit von Auskragung A

- A = Auskragung
- X = Abstand für Nutzlastschwerpunkt
- S = Nutzlastschwerpunkt
- M = Drehmoment

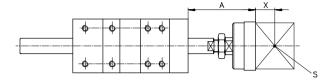

Erklärung zur Lesbarkeit der Diagramme bei kombinierter Belastung


- Auskragung festlegen (75 mm)
- Anteil Nutzlast eintragen (30 N)
- Abstand zur Kurve eintragen
- Zulässiges Drehmoment entspricht der Differenz aus M2 und M1

FEN-... mit Gleitführung

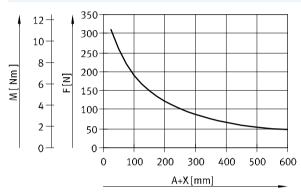

Kolben-∅8/10

Kolben-Ø 12/16


Kolben-Ø 20/25

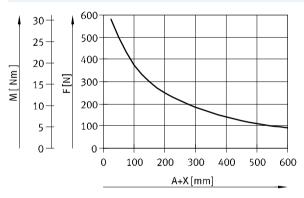
Datenblat

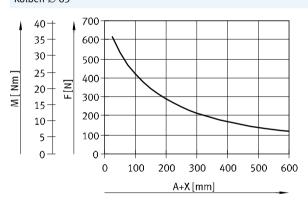
Max. Nutzlast F und Drehmoment M in Abhängigkeit von Auskragung A

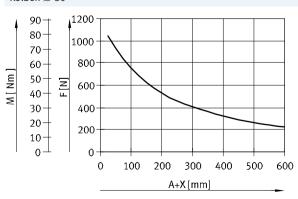


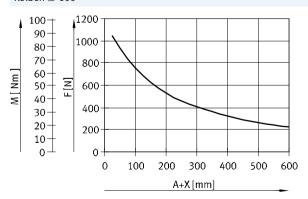
- A = Auskragung
- X = Abstand für Nutzlastschwerpunkt
- S = Nutzlastschwerpunkt
- M = Drehmoment

FENG-... mit Gleitführung

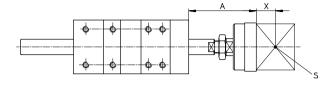





Kolben-Ø 50

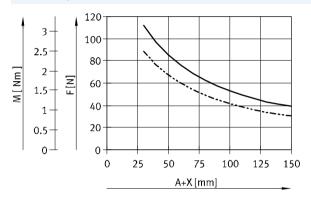

Kolben-Ø 63

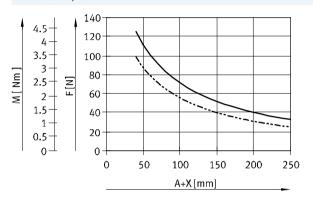
Kolben-∅80


Kolben-∅ 100

Datenblatt

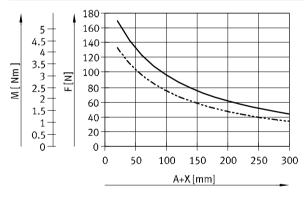
Max. Nutzlast F und Drehmoment M in Abhängigkeit von Auskragung A




- A = Auskragung
- X = Abstand für Nutzlastschwerpunkt
- S = Nutzlastschwerpunkt
- M = Drehmoment

FEN-... mit Kugelumlaufführung

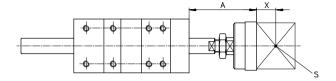
Kolben-Ø 8/10


Kolben-∅ 12/16

Laufleistung von 1500 km
Laufleistung von 3000 km

Laufleistung von 1500 km
Laufleistung von 3000 km

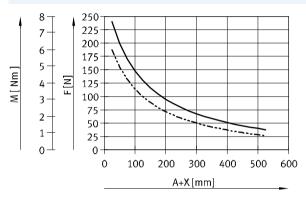
Kolben-Ø 20/25

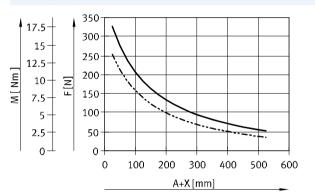


Laufleistung von 5000 km
Laufleistung von 10000 km

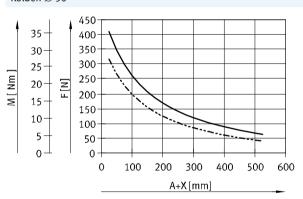
Datenblat

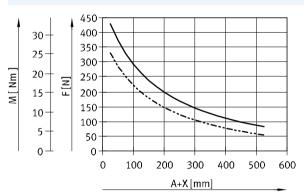
Max. Nutzlast F und Drehmoment M in Abhängigkeit von Auskragung A

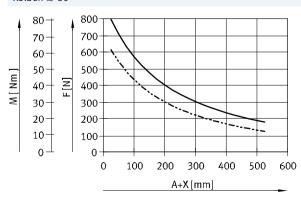


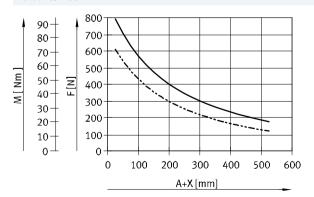

- A = Auskragung
- X = Abstand für Nutzlastschwerpunkt
- S = Nutzlastschwerpunkt
- M = Drehmoment

FENG-... mit Kugelumlaufführung



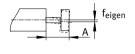


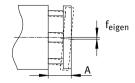

Kolben-∅ 50

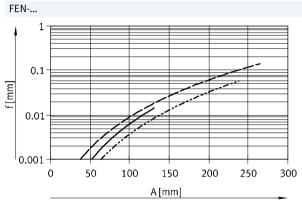

Kolben-∅ 63

Kolben-Ø 80

Kolben-∅ 100




Laufleistung von 5000 km
Laufleistung von 10000 km


FESTO

Datenblat

Auslenkung f_{eigen} (durch Eigengewicht) in Abhängigkeit von Auskragung A

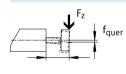
FENG-...

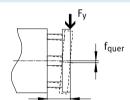
10

1

0.01

0.001


0 100 200 300 400 500 600


A [mm]

FEN-8/10-...-GF/KF
FEN-12/16-...-GF/KF
FEN-20/25-...-GF/KF

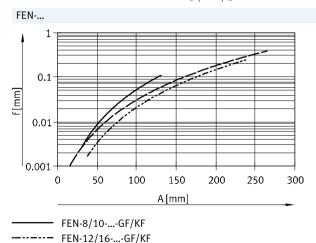
FENG-32-...-GF/KF
FENG-40-...-GF/KF
FENG-50/63-...-GF/KF
FENG-80/100-...-GF/KF

Auslenkung f_{norm} (durch Querkraft) in Abhängigkeit von Auskragung A

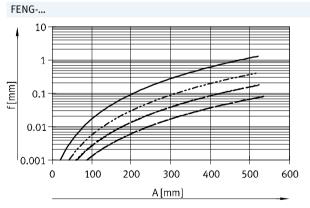
Die maximal zulässige Querkraft darf nicht überschritten werden.

$$f_{quer} = \frac{F_{quer}}{F_{norm}} \times f_{norm}$$

 $F_{norm} = 10 \text{ N}$


= Auskragung der Führungsstange

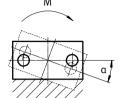
f_{auer} = Auslenkung durch Querkraft


F_{quer} = Querkraft

 F_{norm} = Normierte Querkraft

f_{norm} = Auslenkung durch normierte Querkraft (Wert aus Diagramm)

FEN-20/25-...-GF/KF

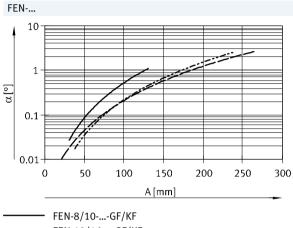


FENG-32-...-GF/KF
FENG-40-...-GF/KF
FENG-50/63-...-GF/KF
FENG-80/100-...-GF/KF

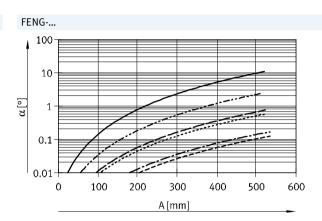
Datenblat

Neigung α (durch Drehmoment) in Abhängigkeit von Auskragung A

$$\alpha = \frac{\text{M}}{\text{M}_{\text{norm}}} \times \alpha_{\text{norm}}$$

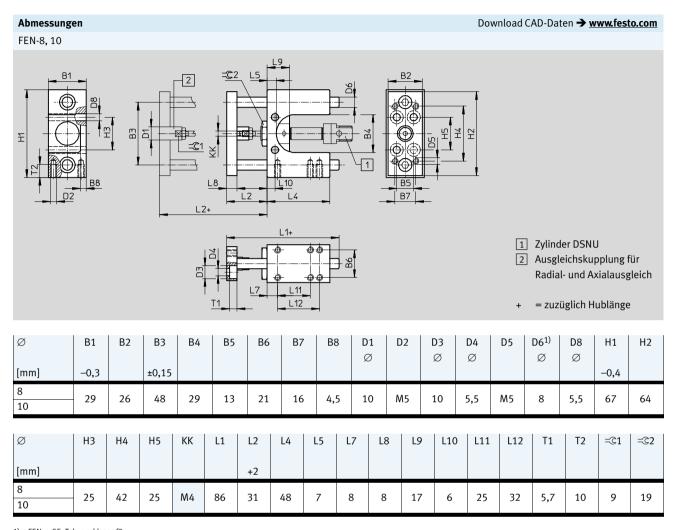

 $M_{norm} = 2 \text{ Nm}$ (gültig für $\alpha \le 10^{\circ}$) A = Auskragung der Führungsstange

a = Neigung durch Drehmoment

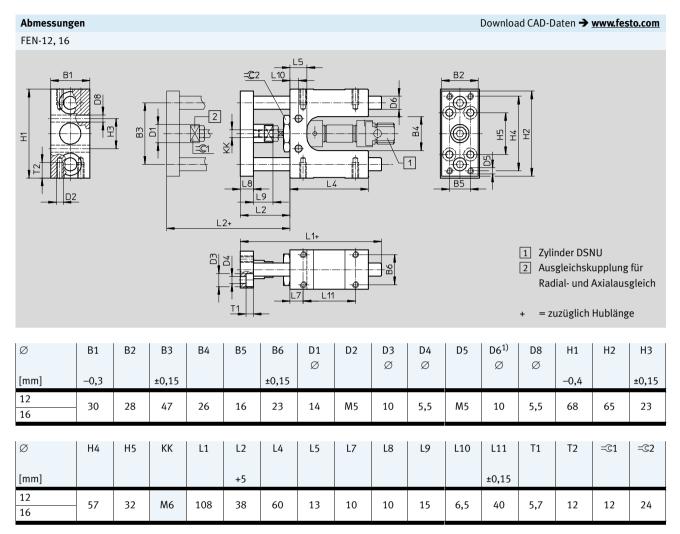

M = Drehmoment

M_{norm} = Normiertes Drehmoment

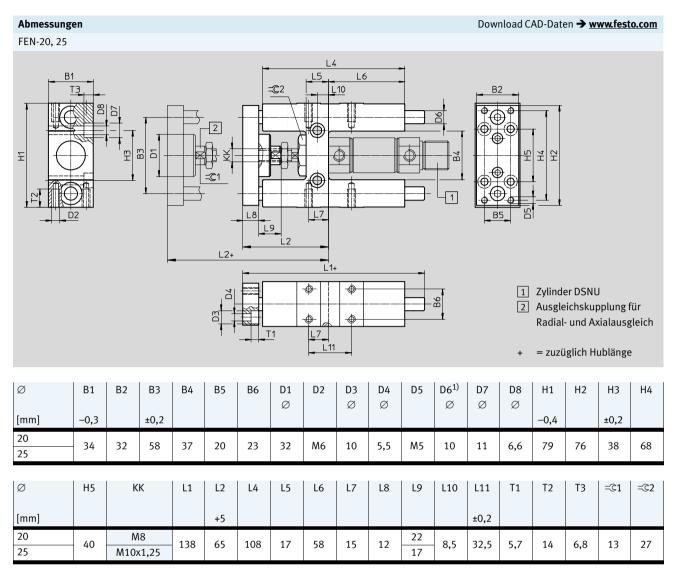
 α_{norm} = Auslenkung durch normierte Querkraft



FENG-32-...-GF/KF
FENG-40-...-GF/KF
FENG-50-...-GF/KF
FENG-63-...-GF/KF
FENG-80-...-GF/KF
FENG-100-...-GF/KF

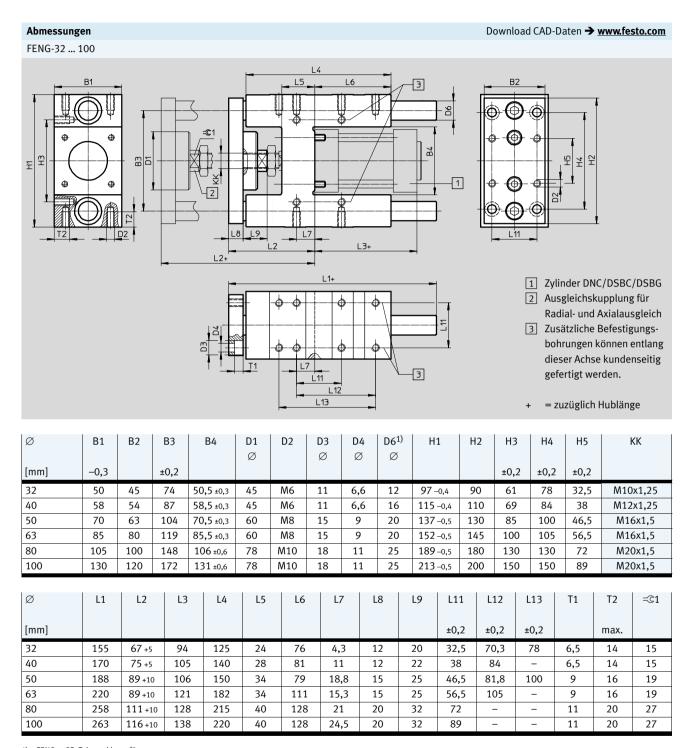


¹⁾ FEN-...-GF: Toleranzklasse f8 FEN-...-KF: Toleranzklasse h6



Datenblatt

¹⁾ FEN-...-GF: Toleranzklasse f8 FEN-...-KF: Toleranzklasse h6



¹⁾ FEN-...-GF: Toleranzklasse f8 FEN-...-KF: Toleranzklasse h6

Datenblat

FENG-...-GF: Toleranzklasse f8 FENG-...-KF: Toleranzklasse h6

Bestellang	Bestellangaben FEN für variable Hübe									
für Normzylinder DSNU										
Kolben-∅	Hub	mit Gleitführung	mit Kugelumlaufführung							
[mm]	[mm]	Teile-Nr. Typ	Teile-Nr. Typ							
8, 10	1 100	35196 FEN-8/10GF	35197 FEN-8/10KF							
12, 16	1 200	19168 FEN-12/16GF	33481 FEN-12/16KF							
20	2 250	19169 FEN-20GF	33482 FEN-20KF							
25	2 250	19170 FEN-25GF	33483 FEN-25KF							

Bestellanga	Bestellangaben FENG für variable Hübe										
für Normzyl	für Normzylinder DNC/DSBC/DSBG										
Kolben-∅	Hub	mit Gleitführung	mit Kugelumlaufführung								
[mm]	[mm]	Teile-Nr. Typ	Teile-Nr. Typ								
32	10 500	34481 FENG-32GF	34487 FENG-32KF								
40		34482 FENG-40GF	34488 FENG-40KF								
50		34483 FENG-50GF	34489 FENG-50KF								
63		34484 FENG-63GF	34490 FENG-63KF								
80		34485 FENG-80GF	34491 FENG-80KF								
100		34486 FENG-100GF	34492 FENG-100KF								

Bestellanga	Bestellangaben FENGKF mit Kugelumlaufführung für feste Hübe										
für Normzyl	inder DNC/	DSBC/DSBG									
Kolben-∅	Teile-Nr.	Тур	Teile-Nr.	Тур	Teile-Nr.	Тур	Teile-Nr.	Тур			
[mm]											
Hub	50 mm		100 mm		160 mm		200 mm				
32	34493	FENG-32-50-KF	34494	FENG-32-100-KF	34495	FENG-32-160-KF	34496	FENG-32-200-KF			
40	34499	FENG-40-50-KF	34500	FENG-40-100-KF	34501	FENG-40-160-KF	34502	FENG-40-200-KF			
50	34506	FENG-50-50-KF	34507	FENG-50-100-KF	34508	FENG-50-160-KF	34509	FENG-50-200-KF			
63	34513	FENG-63-50-KF	34514	FENG-63-100-KF	34515	FENG-63-160-KF	34516	FENG-63-200-KF			
80	34521	FENG-80-50-KF	34522	FENG-80-100-KF	34523	FENG-80-160-KF	34524	FENG-80-200-KF			
100	34529	FENG-100-50-KF	34530	FENG-100-100-KF	34531	FENG-100-160-KF	34532	FENG-100-200-KF			
Hub	250 mm		320 mm		400 mm		500 mm				
32	150289	FENG-32-250-KF	34497	FENG-32-320-KF	150290	FENG-32-400-KF	34498	FENG-32-500-KF			
40	34503	FENG-40-250-KF	34504	FENG-40-320-KF	150291	FENG-40-400-KF	34505	FENG-40-500-KF			
50	34510	FENG-50-250-KF	34511	FENG-50-320-KF	150292	FENG-50-400-KF	34512	FENG-50-500-KF			
63	34517	FENG-63-250-KF	34518	FENG-63-320-KF	34519	FENG-63-400-KF	34520	FENG-63-500-KF			
80	34525	FENG-80-250-KF	34526	FENG-80-320-KF	34527	FENG-80-400-KF	34528	FENG-80-500-KF			
100	34533	FENG-100-250-KF	34534	FENG-100-320-KF	34535	FENG-100-400-KF	34536	FENG-100-500-KF			

20