

Key features

At a glance

Rapid purging of vacuum for safe placement of the workpiece using a solenoid valve for controlling _ the ejector pulse, optional

Flow control screw for adjusting the ejector pulse

Electrical connection via H3 plug connector

Fast vacuum build-up using a solenoid valve for controlling the compressed air supply

Supply port, secured with wire clamp

Additional supply port for separate supply for the ejector pulse, optional, secured with wire clamp

Compact vacuum generator

- Inexpensive, lightweight vacuum generator
- Light weight
- Various output stages and vacuum types
- Short switching times thanks to integrated solenoid valves
- Vacuum on/off
- Ejector pulse
- Quick, precise and safe placement of the workpiece via the ejector pulse
- Simple installation via H3 plug connectors and push-in fittings

Functional principle of OVEL Vacuum ON/OFF

The compressed air supply is controlled by a solenoid valve. The solenoid valve can be supplied with the

switching function NC (normally

Vacuum sensor, optional

The set or taught-in setpoint value for the generated vacuum is monitored via a vacuum sensor. If the setpoint value is reached, or if it is not reached closed), i.e. a vacuum is only generated when the vacuum generator is pressurised with compressed air and the solenoid valve has been switched.

due to malfunctions (e.g. leakage,

dropped workpiece), the vacuum

sensor emits an electrical signal.

• Simple mounting via screws

• Reduced contamination of the

vacuum generator thanks to an

Solenoid valves can be switched

Monitoring of the vacuum by

• Linking of multiple vacuum

manifold (\rightarrow page 12)

with mechanical manual override

generators on a common supply

Quiet operation thanks to

integrated silencer

Integrated filter

open silencer

vacuum sensor

Ejector pulse, optional

After the vacuum is switched off, an ejector pulse is activated and generated by a second solenoid valve to release the workpiece safely from the suction cup and to purge the vacuum

OVEL-...-V1B/V1V/B2B/B2V:

Pressure transmitter SPTE with an analogue output (→ page 16). Detection of analogue signals and conversion into digital signals with downstream signal converter SCDN with LCD display (→ page 21).

OVEL-...-V1PNLK/B2PNLK:

rapidly.

connection.

Pressure sensor SPAE with various switching outputs and LCD display, IO-Link® and teach-in function (→ page 18).

The compressed air supply for the

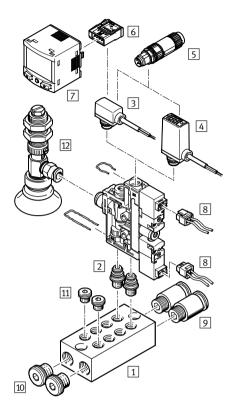
ejector pulse can either be provided

via the supply port or via a separate

Vacuum generators OVEL on common supply manifold OABM-P

Pressure transmitter SPTE/pressure sensor SPAE for monitoring the vacuum, optional, secured with wire clamp

Maintenance-free operation and reduced noise level thanks to an open silencer, optional


Vacuum generator cartridge, secured with wire clamp

Vacuum connection, secured with wire clamp

Housing with mounting holes

Vacuum generators OVEL Peripherals overview

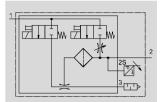
Mounting components and accessories			
	OVELPQ	OVELP	→ Page/Internet
1 Common supply manifold OABM-P	-	•	12
2 Mounting kit OABM-MK	-	•	14
3 Pressure transmitter SPTE	•	•	16
4 Pressure sensor SPAE	•	•	18
5 Plug NECU-S-M8G3/M12G3	•	•	21
6 Plug NECU-S-ECG4	•	•	21
7 Signal converter SCDN	•	•	21
8 Plug socket with cable NEBV	•	•	21
9 Push-in fitting QS	-	•	21
10Blanking plugB-1/8	-	•	21
11 Blanking plug B-M7	-	•	21
12 Suction gripper ESG	•	•	esg
- Suction cup holder ESH	•	•	esh
- Suction cup ESS		•	ess
– Vacuum filter OAFF	•	•	15

Vacuum generators OVEL Type codes

		OVEL	- 10	— H	- 15	- PQ	— VQ6	— UA	- C	— A	- V1	В	— H3
Туре													
OVEL	Vacuum generator, electropneumatic												
OVLL	vacuum generator, electropheumatic												
Nomina	al width of Laval nozzle [mm]												
5	0.45			1									
7	0.7												
10	0.95												
Ejector	characteristic												
Н	High vacuum												
Housin	g width												
10	Grid dimension: 10 mm												
15	Grid dimension: 15 mm												
L													
Pneum	atic connection 1												
PQ	QS connections, metric												
	n connection												
VQ4	Push-in connector 4 mm												
VQ6	Push-in connector 6 mm												
Pneum	atic connection 3												
UA	Open silencer								1				
Vacuur	n valve												
C	Normally closed												
Additio	nal function												
A	Electrical ejector pulse]		
<u> </u>													
Vacuur	n sensor pressure measuring range												
B2	-1 1 bar												
V1	-1 0 bar												
Vacuur	n sensor output signal												
В	1 5 V												
V	0 10 V												
PNLK	PNP or NPN or IO-Link®												
Floctric	al connection												
		onnoctor											
H3	Connection pattern H, vertical plug co	unnector											

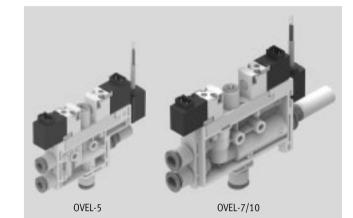
- 📲 - Note

Possible combinations are given in the ordering data.


Additional variants can be ordered using the modular product system \rightarrow 11

- Ejector characteristic
- Pneumatic connection 1
- Vacuum connection
- Pneumatic connection 3
- Ejector pulse connection

FESTO


Vacuum generators OVEL Technical data

- Function
- NC, normally closed: • Ejector pulse
- Push-in connectors
- Open silencer
- Vacuum sensor

Temperature range 0 ... +50 °C

Operating pressure 2 ... 7 bar

General technical data

Туре		OVEL-5-H/L	OVEL-7-H	OVEL-7-L	OVEL-10-H/L							
Nominal width o	of Laval [mm]	0.45	0.7		0.95							
nozzle												
Grid dimension	[mm]	10	15		15							
Grade of filtratio	on [µm]	40										
Mounting positi	on	Any										
Type of mountin	g	Via through-hole										
		On manifold rail	On manifold rail									
Pneumatic	OVELP	Common connection via manifo	Common connection via manifold rail									
connection 1	OVELPQ-VQ3	For tubing O.D. 3 mm	-		-							
0\	OVELPQ-VQ4	For tubing O.D. 4 mm	For tubing O.D. 4	mm	-							
	OVELPQ-VQ6	-	-		For tubing O.D. 6 mm							
Vacuum	OVELVQ3	For tubing O.D. 3 mm	-	-	-							
connection	OVELVQ4	For tubing O.D. 4 mm	For tubing O.D.	-	-							
	OVELVQ6	-	-	For tubing O.D.	For tubing O.D. 6 mm							
				6 mm								
Pneumatic	OVELUA	Open silencer	1	ų								
connection 3	OVELRQ	For tubing O.D. 4 mm	For tubing O.D. 6	mm	For tubing O.D. 6 mm							
Ejector pulse	OVELZ-A	Corresponds to the selected cor	nnection size for pneumatic	connection 1	·							
connection ¹⁾												

1) If there is no ejector pulse, or if the ejector pulse is generated via pneumatic connection 1, the additional connection for the ejector pulse is closed with a blanking plug.

Technical data – I	Design								
Туре		OVELUA	OVELRQ						
Design		T-shape							
Ejector	OVELH	High vacuum/standard							
characteristic	OVELL	High suction rate/standard							
Silencer design		Open	-						
Integrated function	n	Electric on-off valve							
		Filter							
		Open silencer	-						
	OVELA	Electrical ejector pulse							
	OVELA	Flow control valve							
	OVELV1B/V1V/B2	Pressure transmitter							
	B/B2V								
	OVELV1PNLK/	Pressure sensor							
	B2PNLK								
Valve function		Closed							
Manual override		Non-detenting							

Vacuum generators OVEL Technical data

FESTO

Operating and environmental condition	perating and environmental conditions								
Operating pressure [bar]	2 7								
Nominal operating pressure [bar]	4								
Operating medium	Compressed air to ISO 8573-1:2010 [7:4:4]								
Note on operating/pilot medium	Lubricated operation not possible								
Ambient temperature [°C]	0 +50								
Temperature of medium [°C]	0 +50								
Corrosion resistance class CRC ¹⁾	2								
CE marking	To EU EMC Directive ²⁾								
(see declaration of atmosphere)									
Degree of protection	IP40								

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications. For information about the applicability of the component see the manufacturer's EC declaration of conformity at: www.festo.com/sp → Certificates.

2)

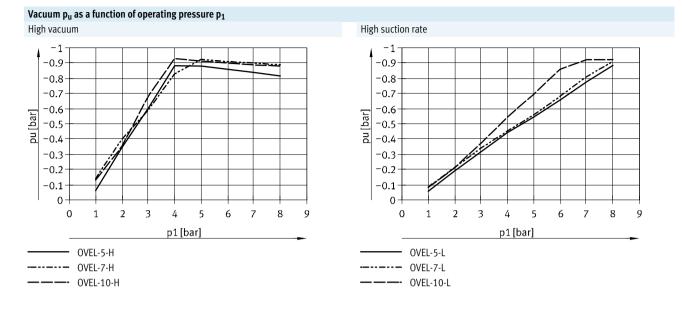
If the component is subject to restrictions on usage in residential, office or commercial environments or small businesses, further measures to reduce the emitted interference may be necessary.

Performance data – High vac	uum			
Туре		OVEL-5-H	OVEL-7-H	OVEL-10-H
Max. vacuum	[%]	89	92	92
Operating pressure for max.	[bar]	4.2	4.5	3.8
vacuum				
Operating pressure for max.	[bar]	3	4	4
suction rate				
Max. suction rate with	[l/min]	4	17	21
respect to atmosphere				
Air supply time at nominal	[s]	2	1.2	1
operating pressure 4 bar	[3]	2	1.2	1
(for 1 l volume) ¹⁾				
(
Noise level at p ₁ = 4 bar	[db(A)]	64	61	68

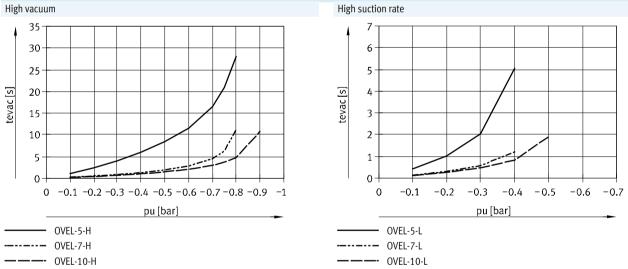
1) Duration for vacuum purging down to a residual vacuum of -0.05 bar after switching off the operating pressure.

Performance data – High suc	tion rate			
Туре		OVEL-5-L	OVEL-7-L	OVEL-10-L
Operating pressure for max. suction rate	[bar]	5	5	6
Max. suction rate with respect to atmosphere	[l/min]	11	33	45
Air supply time at nominal operating pressure 4 bar (for 1 l volume) ¹⁾	[s]	0.8	0.4	0.4
Noise level at p ₁ = 4 bar	[db(A)]	52	64	67

1) Duration for vacuum purging down to a residual vacuum of -0.05 bar after switching off the operating pressure.


Solenoid valve		
Electrical	Function	Ejector pulse
connection,		Vacuum generation
input	Connection type	2x plug connector
	Connection	Plug pattern H
	technology	
	Number of pins/wires	2
	Type of mounting	Snap-locking
Operating volta	ge range [V DC]	21.6 26.4
Duty cycle [%]		100
Coil characteris	tics, 24 V DC [W]	1.0
Vacuum sensor		
Electrical	Function	Sensor
connection,	Connection type	Cable
output	Connection	Open end
	technology	
	Number of pins/wires	3
Cable diameter	[mm]	2.9 ±0.1
Cable length	[m]	2.5
Conductor nom	inal cross [mm ²]	0.14
section		
Cable character		Suitable for use with energy chains

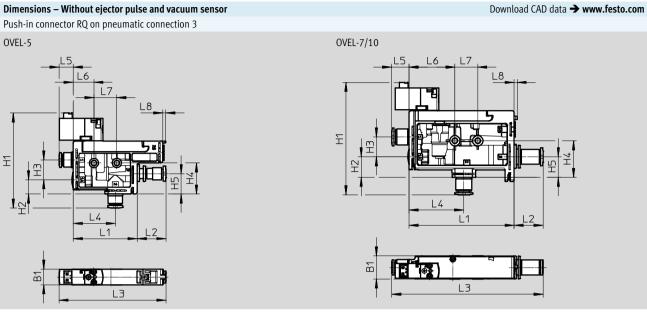
Technical data – Vacuum se	Technical data – Vacuum sensor												
Туре		OVELV1B	OVELV1V	OVELB2B	OVELB2V	OVELV1PNLK	OVELB2PNLK						
Mechanical													
Method of measurement		Piezoresistive pr	essure sensor		Piezoresistive pressure	sensor with display							
Pressure measuring range	[bar]	-1 0 -1 1				-1 0	-1 1						
Setting options		-				Teach-in							
						10-Link®							
						Via display and keys							
Display type		-			LED display, 2-digit								
Electrical													
Operating voltage range,	[V DC]	10 30	18 30	10 30	18 30	18 30							
sensor													
Switching output		-				PNP/NPN, switchable							
Switching element function		-				N/O or N/C contact, swit	chable						
Switching function		-				Freely programmable							
Analogue output	[V]	1 5	0 10	1 5	0 10	-							


Materials	
Housing	PA reinforced
Silencers	PE
Jet nozzle	Wrought aluminium alloy
Collector nozzle	РОМ
Filter	POM
Adjusting screw	Steel
Connecting thread	POM
Screws	Steel
Cable sheath	PVC (colour: grey)
Seals	NBR
Note on materials	RoHS compliant

Vacuum generators OVEL Technical data

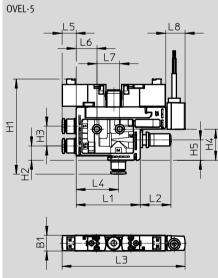


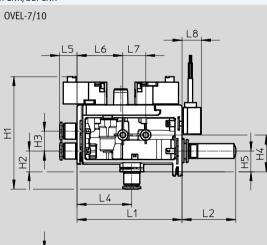
Evacuation time t_{evac} as a function of vacuum p_u for 1 l volume at 4 bar operating pressure


Air consumption q_n as a function of operating pressure p_1

High vacuum/high suction rate

Vacuum generators OVEL Technical data


FESTO



Туре	B1	H1	H2	H3	H4	H5	L1	L2	L3	L4	L5	L6	L7	L8
OVEL-5RQ	10.3	62.4	9.4	13	20.4	13	42	19	70	28	9.2	13.7	15	2
OVEL-7/10RQ	15.2	73.7	13.5	13	24	13.5	68.8	19	99.2	35.8	11.4	30	15	2

Dimensions – With ejector pulse and vacuum sensor

Open silencer UA on pneumatic connection 3, vacuum sensor V1B/V1V/B2B/B2V/V1PLNK/B2PLNK

Download CAD data → www.festo.com

Туре	B1	H1	H2	H3	H4	H5	L1	L2	L3	L4	L5	L6	L7	L8
OVEL-5UAV1B/V1V	10.3					13	42	20	81			13.7	15	~12.7
OVEL-5UAB2B/B2V		62.4	9.4	13	20.4				01	28	9.2			~12.7
OVEL-5UAV1PNLK		02.4	9.4	15	20.4				99	20				~30.8
OVEL-5UAB2PLNK									33					~30.8
OVEL-7/10UAV1B/V1V			13.5	13	24	13.5	68.8	35.2	115.4 3	35.8			15	~12.7
OVEL-7/10UAB2B/B2V	15.2	73.7									11.4	30		~12.7
OVEL-7/10UAV1PNLK		15.1			24	1).)				JJ.0	11.4	50		~30.8
OVEL-7/10UAB2PLNK														50.0

1

FESTO

.

Ordering data – Hig	sh vacuum					
Push-in connector o	n pneumatic connectior	n 1 and vacuum conn	ection, open si	lencer on pneu	imatic conne	ction 3
Description	Vacuum sensor	Vacuum sensor	Nominal	Weight	Part No.	Туре
	pressure measuring	output signal	width of			
	range		Laval			
			nozzle			
	[bar]		[mm]	[g]		
NC – normally close	d					
With vacuum	-1 0	1 5 V	0.45	72	8049046	OVEL-5-H-10-PQ-VQ4-UA-C-A-V1B-H3
sensor and ejector			0.7	89	8049047	OVEL-7-H-15-PQ-VQ4-UA-C-A-V1B-H3
pulse			0.95	88	8049048	OVEL-10-H-15-PQ-VQ6-UA-C-A-V1B-H3
		0 10 V	0.45	72	8049049	OVEL-5-H-10-PQ-VQ4-UA-C-A-V1V-H3
			0.7	87	8049050	OVEL-7-H-15-PQ-VQ4-UA-C-A-V1V-H3
			0.95	88	8049051	OVEL-10-H-15-PQ-VQ6-UA-C-A-V1V-H3
		PNP or NPN or	0.45	75	8049052	OVEL-5-H-10-PQ-VQ4-UA-C-A-V1PNLK-H3
		IO-Link®	0.7	91	8049053	OVEL-7-H-15-PQ-VQ4-UA-C-A-V1PNLK-H3
			0.95	91	8049054	OVEL-10-H-15-PQ-VQ6-UA-C-A-V1PNLK-H3
	-1 1	0 10 V	0.45	72	8069567	OVEL-5-H-10-PQ-VQ4-UA-C-A-B2V-H3
			0.7	87	8069568	OVEL-7-H-15-PQ-VQ4-UA-C-A-B2V-H3
			0.95	88	8069569	OVEL-10-H-15-PQ-VQ6-UA-C-A-B2V-H3
		PNP or NPN or	0.45	75	8069570	OVEL-5-H-10-PQ-VQ4-UA-C-A-B2PNLK-H3
		IO-Link®	0.7	91	8069571	OVEL-7-H-15-PQ-VQ4-UA-C-A-B2PNLK-H3
			0.95	88	8069572	OVEL-10-H-15-PQ-VQ6-UA-C-A-B2PNLK-H3

Vacuum generators OVEL Ordering data – Modular product system

Or	dering table					
0V	EL		Condi- tions	Code	Ent cod	,
M	Module no.	8049045				
	Vacuum generator	Vacuum generator, electropneumatic		OVEL	OVI	EL
	Nominal width of Laval [mm]	0.45		-5		
	nozzle	0.7		-7		
		0.95		-10		
	Ejector characteristic	High vacuum		-H		
		High suction rate		-L		
	Housing size/width [mm]	10	1	-10		
		15	2	-15		
	Pneumatic connection 1	For pneumatic linking via manifold rail		-P		
		Push-in connectors, metric		-PQ		
	Vacuum connection	Push-in connector 3 mm	3	-VQ3		
		Push-in connector 4 mm	4	-VQ4		
		Push-in connector 6 mm	5	-VQ6		
	Pneumatic connection 3	Push-in connectors, metric		-RQ		
		Open silencer		-UA		
0	Ejector pulse connection	Via pneumatic connection 1				
		Additional connection (as pneumatic connection 1)		-Z		
Μ	Vacuum valve	Normally closed		-C	-C	
0	Additional function	Without ejector pulse				
		Electrical ejector pulse	6	-A		
	Vacuum sensor pressure	Without vacuum sensor				
	measuring range	-1 0 bar		-V1		
		-1 1 bar		-B2		
	Vacuum sensor output signal	Without vacuum sensor				
		1 5 V	7	В		
		0 10 V	7	V		
		PNP or NPN or IO-Link®	7	PNLK		
Μ	Electrical connection	Connection pattern H, vertical plug		-Н3	-H3	}

Not with Laval nozzle of nominal width 7, 10

1 10 2 15 3 VQ3 Not with Laval nozzle of nominal width 5

Only with Laval nozzle of nominal width 5

4 VQ4 Only with Laval nozzle of nominal width 5 or Laval nozzle of nominal width 7 in combination with ejector characteristic H

5 VQ6 Only with Laval nozzle of nominal width 10 or Laval nozzle of nominal width 7 in combination with ejector characteristic L

6 **A** Mandatory specification in combination with ejector pulse connection Z

B, **V**, **PNLK** Mandatory specification in combination with vacuum sensor pressure measuring range B2, V1

M Mandatory da	ata								
Transfer order c	ode								
8049045	OVEL -	-] - [-	_]-[-	– C	[

-

– H3

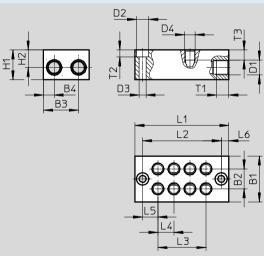
Common supply manifold OABM-P For vacuum generator OVEL-...-P

Note

Vacuum generators with additional connection for ejector pulse (OVEL-...-Z-C-A) cannot be combined on the common supply manifold with vacuum generators without an additional connection (OVEL-...-C-A).

Download CAD data → www.festo.com

FESTO

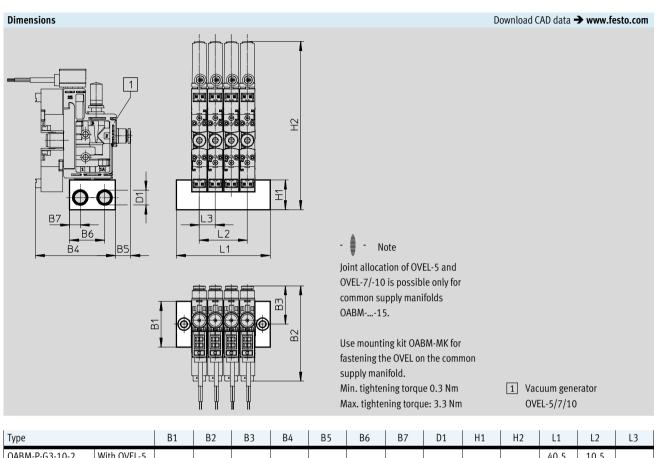

General technical data

Pneumatic connection 1	G1⁄8					
Type of mounting	Via through-hole					

Materials

Matchats							
Sub-base	Wrought aluminium alloy						
Note on materials	RoHS compliant						

Dimensions



Туре	B1	B2	B3	B4	D1	D2	D3	D4	H1	H2
						Ø	Ø			
OABM-P-G3-10-2										
OABM-P-G3-10-4	30	13	23	7	G1⁄/8	8	4.5	M7	19.5	11.5
OABM-P-G3-10-8	_									
OABM-P-G3-15-2										
OABM-P-G3-15-4	30	13	23	7	G1⁄/8	8	4.5	M7	19.5	11.5
OABM-P-G3-15-8										
	1									
Туре	L1	L2	L3	L4	L	.5	L6	T1	T2	T3
OABM-P-G3-10-2	40.5	30.5	10.5							
OABM-P-G3-10-4	61.5	51.5	31.5	10.	5 1	0	5	8	4.6	6.6

OABM-P-G3-10-2	40.5	30.5	10.5						
OABM-P-G3-10-4	61.5	51.5	31.5	10.5	10	5	8	4.6	6.6
OABM-P-G3-10-8	103.5	93.5	73.5						
OABM-P-G3-15-2	51.5	41.5	15.5						
OABM-P-G3-15-4	82.5	72.5	46.5	15.5	13	5	8	4.6	6.6
OABM-P-G3-15-8	144.5	134.5	108.5						

Vacuum generators OVEL

FESTO

	51	52	2,5		-	-	-						
With OVEL-5											40.5	10.5	
	30	62	25	52	10	23	7	G1⁄8	19.5	110	61.5	31.5	10.5
											103.5	73.5	
With											51.5	15.5	
OVEL-7/10	30	74	31	57	16	23	7	G1⁄8	19.5	125	82.5	46.5	15.5
											144.5	108.5	
	With	With OVEL-5 30 With	With OVEL-5 30 62 With	With OVEL-5 30 62 25 With	With OVEL-5 30 62 25 52 With 52 <td< td=""><td>With OVEL-5 30 62 25 52 10 With 10 10 10 10 10</td><td>With OVEL-5 30 62 25 52 10 23 With 23</td><td>With OVEL-5 30 62 25 52 10 23 7 With 7</td><td>With OVEL-5 30 62 25 52 10 23 7 G¼s With 61/8</td><td>With OVEL-5 30 62 25 52 10 23 7 G¼8 19.5 With Image: Second colspan="4">Image: Second colspan="4" With Image: Second colspan="4">Image: Second colspan="4"</td><td>With OVEL-5 30 62 25 52 10 23 7 G¹/8 19.5 110 With 10 23 7 G¹/8 19.5 110</td><td>With OVEL-5 30 62 25 52 10 23 7 G¹/₈ 19.5 110 40.5 With OVEL-5 30 62 25 52 10 23 7 G¹/₈ 19.5 110 61.5 With 0VEL-7/10 30 74 31 57 16 23 7 G¹/₈ 19.5 125 51.5</td><td>With OVEL-5 30 62 25 52 10 23 7 6¼8 19.5 110 40.5 10.5 With OVEL-5 30 62 25 52 10 23 7 6¼8 19.5 110 61.5 31.5 With OVEL-7/10 30 74 31 57 16 23 7 6¼8 19.5 125 82.5 46.5</td></td<>	With OVEL-5 30 62 25 52 10 With 10 10 10 10 10	With OVEL-5 30 62 25 52 10 23 With 23	With OVEL-5 30 62 25 52 10 23 7 With 7	With OVEL-5 30 62 25 52 10 23 7 G¼s With 61/8	With OVEL-5 30 62 25 52 10 23 7 G¼8 19.5 With Image: Second colspan="4">Image: Second colspan="4" With Image: Second colspan="4">Image: Second colspan="4"	With OVEL-5 30 62 25 52 10 23 7 G ¹ /8 19.5 110 With 10 23 7 G ¹ /8 19.5 110	With OVEL-5 30 62 25 52 10 23 7 G ¹ / ₈ 19.5 110 40.5 With OVEL-5 30 62 25 52 10 23 7 G ¹ / ₈ 19.5 110 61.5 With 0VEL-7/10 30 74 31 57 16 23 7 G ¹ / ₈ 19.5 125 51.5	With OVEL-5 30 62 25 52 10 23 7 6¼8 19.5 110 40.5 10.5 With OVEL-5 30 62 25 52 10 23 7 6¼8 19.5 110 61.5 31.5 With OVEL-7/10 30 74 31 57 16 23 7 6¼8 19.5 125 82.5 46.5

Ordering data					
Common supply manifold	Number of device locations	CRC ¹⁾	Weight [g]	Part No.	Туре
For OVEL-5	2	2	45.2	8049141	OABM-P-G3-10-2
	4	2	69.6	8049142	OABM-P-G3-10-4
	8	2	118.6	8049143	OABM-P-G3-10-8
For OVEL-5/7/10	2	2	59.6	8049144	OABM-P-G3-15-2
	4	2	97.1	8049145	OABM-P-G3-15-4
	8	2	172	8049146	OABM-P-G3-15-8

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Mounting kit OABM-MK

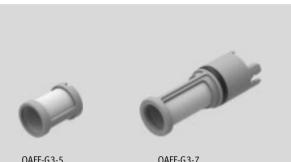
For common supply manifold OABM-P

General technical data							
	Retaining clips						
	Can be screwed onto manifold rail						
[Nm]	0.3						
[Nm]	3.3						

Materials	
Hollow bolt	Wrought aluminium alloy
Seals	NBR
Note on materials	RoHS compliant

Ordering data

ordering data				
	CRC ¹⁾	Weight	Part No.	Туре
		[g]		
For common supply manifold OABM-P	2	7	8065850	OABM-MK-G3


Corrosion resistance class CRC 2 to Festo standard FN 940070
 Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

FESTO

Vacuum generators OVEL

Vacuum filter OAFF

OAFF-G3-5

OAFF-G3-7

General technical data Type of mounting Push-on Snapping in Grade of filtration [µm] 40 Ejector pulse suitability [bar] ≤7

Operating and environmental conditions					
Operating pressure	[bar]	-0.95			
Operating medium		Atmospheric air based on ISO 8573-1:2010 [7:-:-]			

Matariala

Materials		
Туре	OAFF-G3-5	OAFF-G3-7
Housing	POM	
Filter	Fabric, PA	
Seals	-	NBR
Note on materials	RoHS compliant	

Ordering data PU¹⁾ Weight Part No. Туре [g] For vacuum generator OVEL-5 8068944 OAFF-G3-5 10 1 For vacuum generator OVEL-7/10 1.5 8068945 OAFF-G3-7 10

1) Packaging unit

Pressure transmitter SPTE

(Order code in the modular product system: V1B/V1V/B2B/B2V)

- Pressure measuring range -1 ... 0 bar or -1 ... 1 bar
- Analogue outputs 1 ... 5 V or 0 ... 10 V

Detection of analogue signals and conversion into digital signals with downstream signal converter SCDN with LCD display (\rightarrow page 21).

General technical data

Certification	RCM	
	c UL us - Recognized (OL)	
CE mark	To EU EMC Directive	
(see declaration of conformity) ¹⁾		
Note on materials	RoHS compliant	

1) For information about the applicability of the component see the manufacturer's EC declaration of conformity at: www.festo.com/sp > Certificates.

If the component is subject to restrictions on usage in residential, office or commercial environments or small businesses, further measures to reduce the emitted interference may be necessary.

Input signal/measuring element						
Туре	SPTE-V1R	SPTE-B2R				
Measured variable	Relative pressure					
Method of measurement	Piezoresistive pressure sensor					
Pressure measuring range [bar]	0	-1				
start value						
Pressure measuring range end [bar]	-1	1				
value						
Max. overload pressure [bar]	5	5				
Operating medium	Compressed air to ISO 8573-1:2010 [7:4:4]					
Note on operating/pilot medium	Operation with lubricated medium possible					
Temperature of medium [°C]	0 50					
Ambient temperature [°C]	0 50					

Output, general		
Accuracy ±FS ¹⁾	[%]	3 (at room temperature of approx. 23 °C)
		4 (in the ambient temperature range 0 50 °C)
Repetition accuracy ±FS ¹⁾	[%]	0.3
Temperature coefficient ±FS/	[%]	0.05
K ¹⁾		

1) % FS = % of the measuring range (full scale)

Analogue output						
Туре		SPTEV-2.5K	SPTEB-2.5K			
Analogue output	[V]	0 10	1 5			
Rise time	[ms]	1				
Min. load resistance of voltage output	[kΩ]	15				

Output, additional data				
Short circuit protection		For all electrical connections		
Electronics				
Туре		SPTEV-2.5K	SPTEB-2.5K	
Operating voltage range DC	[V]	18 30	10 30	
Reverse polarity protection		For all electrical connections		
Electromechanical component	S			
Electrical connection		Cable, 3-wire, open end		
Cable length	[m]	2.5		
Mechanical components				
Type of mounting		Pin-type connection		
Mounting position		Any		
Pneumatic connection		Cartridge 10 mm		
Product weight	[g]	35		

Immissions/emissions

Information on housing materials

Degree of protection	IP40				
Corrosion resistance class CRC ¹⁾	2				

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

PA reinforced

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Dimensions						Down	load CAD data 🗲	www.festo.com
						1] Pressure supply cartridge 10 mr	
Туре	B1	D1 Ø	D2 Ø	H1	H2	L2	L3	L4
SPTEPC10	9.8	8.9	2.9	7.6	11.7	20.5	2500	17.5

Ordering data						
Pneumatic	Electrical	Pressure measuring	Analogue output	Order code in the	Part No.	Туре
connection	connection	range		modular product		
		[bar]	[V]	system		
Cartridge 10 mm						
Califiuge 10 IIIII	Cable, 3-wire,	-1 0	0 10	V1V	8025974	SPTE-V1R-PC10-V-2.5K
Caltiluge 10 mm	Cable, 3-wire, open end	-1 0	0 10 1 5	V1V V1B	8025974 8025975	SPTE-V1R-PC10-V-2.5K SPTE-V1R-PC10-B-2.5K
		-1 0 -1 1				

FESTO

Accessories

Pressure sensor SPAE

(Order code in the modular product system: V1PNLK/B2PNLK)

- Pressure measuring range -1 ... 0 bar or -1 ... 1 bar
- Switching output PNP/NPN, switchable
- IO-Link®
- LCD display
- Teach-in function

General technical data

ocnoral technical adda					
Certification	RCM				
	c UL us - Recognized (OL)				
CE mark	To EU EMC Directive				
(see declaration of conformity) ¹⁾					
Note on materials	RoHS compliant				

For information about the applicability of the component see the manufacturer's EC declaration of conformity at: www.festo.com/sp
 Certificates.
 If the component is subject to restrictions on usage in residential, office or commercial environments or small businesses, further measures to reduce the emitted interference may be necessary.

Input signal/measuring element						
Туре		SPAE-V1R	SPAE-B2R			
Measured variable		Relative pressure				
Method of measurement		Piezoresistive pressure sensor				
Pressure measuring range	[bar]	0	-1			
start value						
Pressure measuring range end	[bar]	-1	1			
value						
Max. overload pressure	[bar]	5	5			
Operating medium		Compressed air to ISO 8573-1:2010 [7:4:4]				
Note on operating/pilot medium		Operation with lubricated medium possible				
Temperature of medium	[°C]	0 50				
Ambient temperature	[°C]	0 50				

Signal processing	
Resolution ADC	10 bits

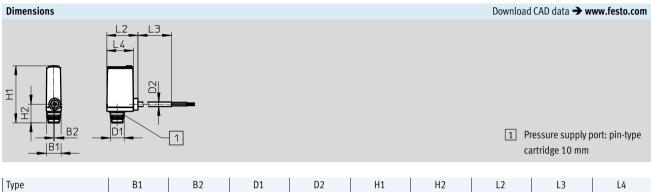
Output, general						
Accuracy ±FS ¹⁾	1.5 (at room temperature of approx. 23 °C)					
		2.5 (in the ambient temperature range 0 50 °C)				
Repetition accuracy ±FS ¹⁾	[%]	0.3				
Temperature coefficient ±FS/ K ¹⁾	[%]	0.05				

1) % FS = % of the measuring range (full scale)

Switching output Switching output PNP/NPN, switchable Switching function Freely programmable Switching element function N/C or N/O contact, switchable Max. output current [mA] 100

Measured value display	
Display range start value [% FS]	0
Display range end value [% FS]	99
Output, additional data	
Short circuit protection	For all electrical connections
Communication interface	
Log	IO-Link®
IO-Link®, protocol version	Device V 1.1
IO-Link®, profile	Smart sensor profile
IO-Link®, function classes	Binary data channel (BDC)
	Diagnostics
	Identification
	Process data variable (PDV)
	Teach channel
IO-Link®, communication mode	COM2 (38.4 kBaud)
IO-Link®, SIO mode support	Yes
IO-Link®, port class	A
IO-Link®, process data width OUT	0 byte
IO-Link®, process data width IN	2 bytes
IO-Link®, process data content IN	2 bit BDC (pressure monitoring)
	14 bit PDV (pressure reading)
IO-Link®, minimum cycle time [ms]	3
IO-Link®, data memory required	0.5 KB
Electronic components	
Operating voltage range DC [V]	18 30
Reverse polarity protection	For all electrical connections
Electromechanical components	
Electrical connection	Cable, 3-wire, open end
Cable length [m]	2.5
Markenial community	
Mechanical components	
Type of mounting	Pin-type connection
Mounting position	Any Castridae 10 mm
Pneumatic connection	Cartridge 10 mm 40
Product weight [g]	
Information on housing materials	Reinforced PA
Dicplay/operation	
Display/operation	
Display type	LED display, 2-digit
Displayable units	% FS
Switching status indication	Yellow LED
Setting options	Via display and keys, teach-in, IO-Link®
Threshold value setting range [%]	1 98

Protection against tampering


PIN code

Immissions/emissions				
Degree of protection	IP40			
Corrosion resistance class CRC ¹⁾	2			

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Туре	B1	B2	D1	D2	H1	H2	L2	L3	L4
			Ø	Ø					
SPAEPC10	9.8	0.7	8.9	2.9	~37.5	12.2	20.5	2500	17.5

Ordering data

ordering data					
Pneumatic connection	Electrical connection	Pressure measuring range	Order code in the modu-	Part No.	Туре
		[bar]	lar product system		
Cartridge 10 mm	Cable, 3-wire, open end	-1 0	V1PNLK	8025978	SPAE-V1R-PC10-PNLK-2.5K
		-1 1	B2PNLK	8025979	SPAE-B2R-PC10-PNLK-2.5K

Subject to change - 2018/03

FESTO

FESTO

Vacuum generators OVEL

Ordering data – Plug NECU-S-M8G3/M12G3Technical data → I				
	Electrical connection	Part No.	Туре	
	Plug M8x1, 3-pin, straight, insulation displacement connector	562024	NECU-S-M8G3-HX	
a a a a a a a a a a a a a a a a a a a	Plug M12x1, A-coded, 3-pin, straight, insulation displacement connector	562027	NECU-S-M12G3-HX	

Ordering data – P	lug NECU-S-ECG4		Technical data 🗲 Internet: necu
	Electrical connection	Part No.	Туре
	Plug square design, 4-pin, straight, insulation displacement connector	570922	NECU-S-ECG4-HX-Q3

Ordering data – S	Ordering data – Signal converter SCDN Technical data → Internet: scr					
	Measured variable	Part No.	Туре			
	Voltage	8035555	SCDN-2V-EC4-PNLK-L1			

Ordering data –	Drdering data – Plug socket with cable NEBV Technical data → Internet: nebv					
	Electrical connection	Cable length [m]	Part No.	Туре		
- II	Socket, 2-pin	Flying leads	0.5	566654	NEBV-H1G2-KN-0.5-N-LE2	
	Plug pattern H	Open end	1	566655	NEBV-H1G2-KN-1-N-LE2	
			2.5	566656	NEBV-H1G2-KN-2.5-N-LE2	
			5	566657	NEBV-H1G2-KN-5-N-LE2	
\square	Socket, 2-pin	Cable	0.5	566658	NEBV-H1G2-P-0.5-N-LE2	
A LA	Plug pattern H	Open end	1	566659	NEBV-H1G2-P-1-N-LE2	
			2.5	566660	NEBV-H1G2-P-2.5-N-LE2	
			5	566661	NEBV-H1G2-P-5-N-LE2	

Ordering data – Blanking plug B						
	Pneumatic connection	Part No.	Туре	PU ¹⁾		
A	M7	174309	B-M7	10		
I CON	G1/8	3568	B-1/8	10		

1) Packaging unit.

Ordering data – Push-in fitting QS Pneumatic connection PU¹⁾ Part No. Туре Tubing O.D. 8 mm 186098 QS-G1/8-8 10 G1⁄8 G1⁄/8 Tubing O.D. 8 mm 186109 QS-G1/8-8-I 10

1) Packaging unit.