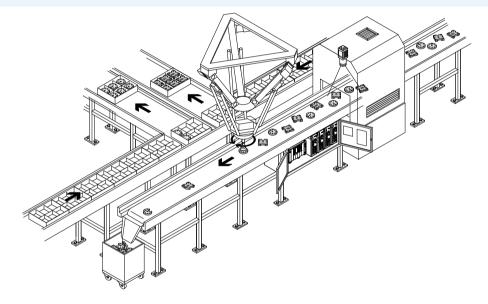
FESTO

FESTO

Merkmale

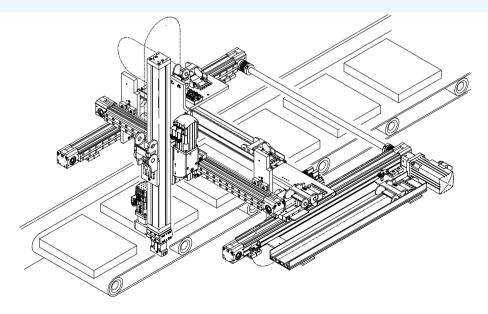
Auf einen Blick

Das High-Speed-Handling mit Robotik-Funktionalität für freie Bewegung im Raum steht für Präzision in der Bewegung und der Positionierung, ebenso wie für hohe Dynamik bis 150 Picks/min. Durch die hohe Steifigkeit des mechanischen Aufbaus und die geringe bewegte Masse ist die Stabkinematik mit Zahnriemenachsen in Delta-Anordnung bis zu drei Mal schneller als vergleichbare kartesische Systeme.


Drei Doppelstäbe sorgen für die permanent waagrechte Position der Fronteinheit. Achsen und Servomotoren bewegen sich nicht mit. Die Stabkinematik eignet sich für Handhabungsaufgaben von Massen bis zu max. 5 kg.

Typische Anwendungen sind:

- Pick and Place von Kleinteilen
- Kleben
- Etikettieren
- Palletieren
- Sortieren
- Gruppieren
- Umsetzen und Vereinzeln


Vergleich zwischen Stabkinematik und kartesischem System Stabkinematik

- Geringe bewegte Masse ideal für höchste Anforderungen an die Dynamik in 3D
- Hohe Bahngenauigkeit bei unterschiedlichen Bahnprofilen auch bei hochdynamischem Betrieb
- 4 Baugrößen mit einem Arbeitsraum-Ø von bis zu 1200 mm

Kartesisches System

- Achsen bauen aufeinander auf; die erste Achse trägt alle nachfolgenden Achsen
- Hohe bewegte Masse, dadurch deutlich geringere Dyanmik
- Quaderförmiger, in der größe skalierbarer, Arbeitsraum
- Baut auf Standardkomponenten auf
- Flexible Bauformen

FESTO

Merkmale

Technik im Detail

Stabkinematik

- 1 Montagerahmen
- 2 Montagewinkel für Zahnriemenachse
- 3 Motor
- 4 Anschlussblock
- 5 Stabpaar
- 6 Schnittstellengehäuse
- 7 Winkelbausatz → Seite 31
- 8 Schutzschlauch → Seite 31
- 9 Zahnriemenachse
- 10 Schlauchhalter → Seite 31
- 11 Fronteinheit zur Befestigung eines Greifers u.s.w.
 - → Seite 22

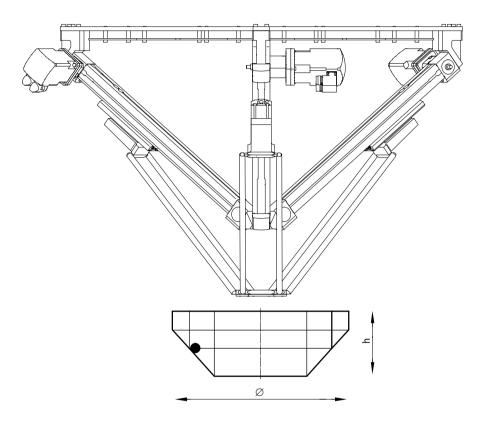
Fronteinheit → Seite 22

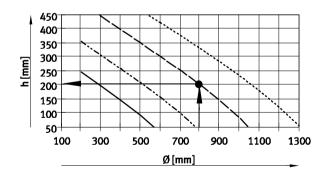
Die Fronteinheit kann optional über den Produktbaukasten mitbestellt werden.

Sie beinhaltet einen Getriebemotor, der eine Drehbewegung (4. Achse) ermöglicht und ist in zwei Baugrößen verfügbar. Zusätzlich kann die Fronteinheit mit oder ohne Drehdurchführung, für Vakuum bzw. Überdruck, gewählt werden.

An ihr kann eine Vielzahl von Greifern angebaut werden

→ Seite 32.


Zur Verfügung stehender Arbeitsraum


Vier Baugrößen stehen zur Auswahl, die sich in ihrem Arbeitsraum- \varnothing unterscheiden.

Der mögliche Arbeitsraum kann vereinfacht über die Form eines

Zylinders beschrieben werden (→ Zeichnung).

Je höher der gewünschte Arbeitsraum, desto kleiner ist sein Durchmesser (→ Diagramm).

EXPT-45 ---- EXPT-70 EXPT-95 ----- EXPT-120

FESTO

Merkmale

Motoranbauvarianten

Die Anbaulage der Motoren kann über den Produktbaukasten

(→ Seite 28) individuell konfiguriert werden.

Die Standard-Motor-Anbaulage entspricht dem Code HHH (vergleiche Abbildung unten). Dies bedeutet: A1/A2/A3 hinten.

Soll ein Motor in Richtung vorn montiert werden, ist für die jeweilige Achse ein V im Bestellcode anzugeben.

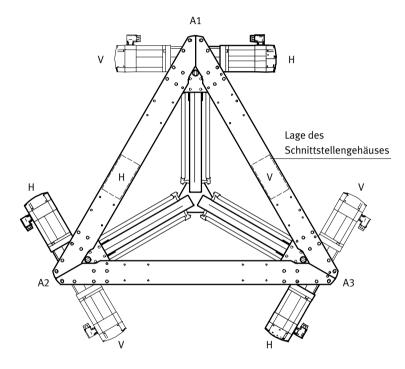
Die Position des Schnittstellengehäuses hängt von der Position des Motors (V oder H) an Achse A1 ab.

Code Beschreibung

HHH A1/A2/A3 hinten

HHV A3 vorne; A1/A2 hinten

HVH A2 vorne; A1/A3 hinten


HVV A2/A3 vorne; A1 hinten

VHH A1 vorne; A2/A3 hinten

VHV A1/A3 vorne; A2 hinten

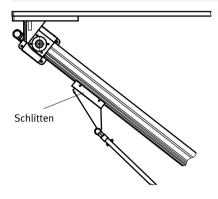
VVH A1/A2 vorne; A3 hinten

VVV A1/A2/A3 vorne

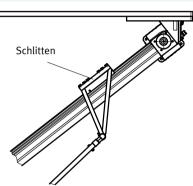
FESTO

Markmala

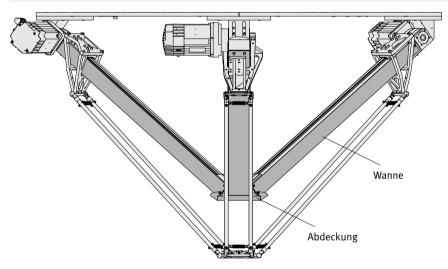
Partikelschutz für Baugröße 95 und 120


Einbauvariante: geschützte Ausführung (P8)

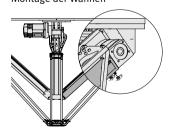
Durch Abrieb am Zahnriemen können bei der Grundausführung lose Partikel in den Arbeitsraum fallen.

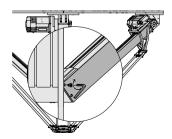

Bei Auswahl der Variante EXPT-...-P8 (→ Seite 28) werden die Achsen gedreht (Schlitten nach oben) eingebaut. Zusätzlich kann als separates

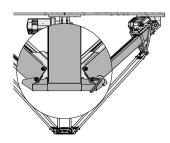
Zubehör ein Abdeckungsbausatz EASC-E10 (→ Seite 31) bestellt und angebaut werden, der verhindert, dass diese Partikel in den Arbeitsraum gelangen. Sie rutschen in den Wannen nach unten und sammeln sich in der Abdeckung (siehe unten).


Standard

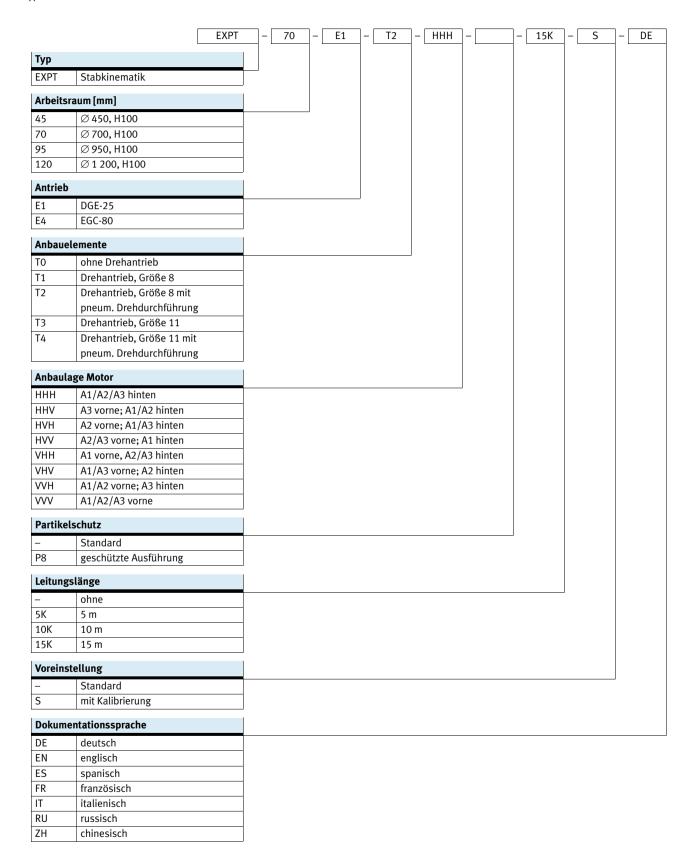
Geschützte Ausführung (P8)



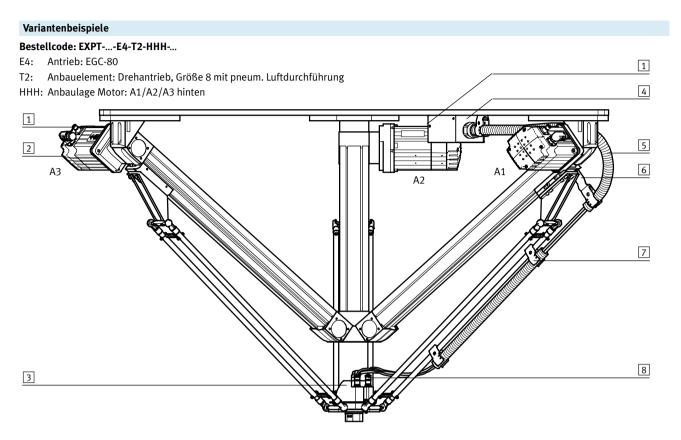

Geschützte Ausführung (Merkmal P8 im Produktbaukasten) mit Abdeckungsbausatz EASC-E10 (als separates Zubehör bestellbar)


Einfache Montage des Abdeckungsbausatzes EASC-E10

Montage der Wannen

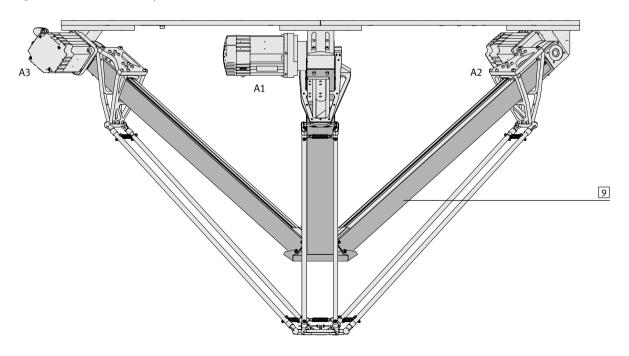


Montage der Abdeckung


FESTO

Typenschlüssel

Stabkinematik EXPT, Tripod Peripherieübersicht



Bestellcode: EXPT-...-E4-T0-HVV-P8-... mit Abdeckungsbausatz EASC-E10-...

E4: Antrieb: EGC-80

T0: Anbauelement: ohne Drehantrieb HVV: Anbaulage Motor: A1 hinten, A2/A3 vorne Partikelschutz: geschützte Ausführung

Abdeckungsbausatz EASC-E10 muss separat als Zubehör bestellt werden.

Stabkinematik EXPT, Tripod Peripherieübersicht

Anb	auteile und Zubehör		
	Тур	Beschreibung	→ Seite/Internet
1	Verbindungsleitung	alle notwendigen Verbindungsleitungen/Druckluftschlauch werden bei Auslieferung	30
	5K, 10K, 15K	lose mitgeliefert. Die benötige Kabellänge kann im Produktbaukasten (keine, 5 m,	
		10 m oder 15m) gewählt werden	
2	Servomotor	die Anbaulage der Motoren wird über den Produktbaukasten (HHH VVV) definiert.	-
	HHH, HHV,	Durch einen Multiturn-Drehgeber ist keine Referenzfahrt notwendig	
3	Fronteinheit	zur Auswahl stehen:	-
	T0, T1, T2,	• Fronteinheit ohne Drehantrieb (T0)	
		• Fronteinheit mit Drehantrieb (T1 bis T4)	
4	Schnittstellengehäuse	dient als Schnittstelle zwischen Stabkinematik und Schaltschrank, zur Versorgung	-
		der Fronteinheit	
5	Schutzschlauch	ist bei allen Varianten (T0 bis T4), an der Achse A1, vormontiert	31
	MKG		
6	Winkelbausatz	ist bei allen Varianten (T0 bis T4), an der Achse A1, vormontiert.	31
	EAHM-E10	Je nach Bedarf können über das Zubehör weitere Winkelbausätze bestellt werden	
7	Schlauchhalter	ist bei allen Varianten (T0 bis T4), an der Achse A1, vormontiert.	31
	EAHM-E10-TH	Je nach Bedarf können über das Zubehör weitere Schlauchhalter bestellt werden	
8	Installation Fronteinheit	die Leitungen zur Versorgung der Fronteinheit sind bereits zwischen Fronteinheit und	_
		Schnittstellengehäuse installiert	
9	Abdeckungsbausatz	schützt den Arbeitsraum vor Verschmutzung durch Partikel.	31
	EADC-E10	Der Bausatz muss kundenseitig montiert werden	

FESTO

-**Ø**- Baugröße 45, 70, 95, 120

- X - Reparaturservice

Allgemeine Technische Daten								
Baugröße	45	70	95	120				
Konstruktiver Aufbau		Stabkinematik	Stabkinematik					
Motorart		Servomotor						
Einbaulage		waagrecht						
Arbeitsraum								
Nenndurchmesser	[mm]	450	700	950	1200			
Nennhöhe	[mm]	100	100	100	100			
Max. Beschleunigung ¹⁾	[m/s ²]	110						
Max. Geschwindigkeit ¹⁾	[m/s]	7						
Max. Pickrate ¹⁾²⁾	[picks/min]	150						
Wiederholgenauigkeit	[mm]	±0,1						
Positioniergenauigkeit ³⁾	[mm]	±0,5						
Spurtreue ³⁾⁴⁾	[mm]	±0,5						
Nennlast ⁵⁾								
bei min. Dynamik	[kg]	5						
bei max. Dynamik	[kg]	1						
Basisgewicht	[kg]	45	47,5	61,5	66			

- 1) Beim Einsatz in Verbindung mit dem Motorcontroller CMMP-AS-C5-3A.
- Im 12" Zyklus.
- 3) Nur bei kalibriertem System (Bestellcode S).
 4) Bei einer Geschwindigkeit von ≤0,3 m/s.
- 5) Nennlast = Werkzeuglast (an der Fronteinheit befestigtes Zubehör) + Nutzlast

Max. Prozesskraft in Z-Richtung	3				
Baugröße		45	70	95	120
bei einem Arbeitsraum-∅	[mm]	0	0	0	0
Prozesskraft	[N]	1300	1000	1000	850
bei einem Arbeitsraum-⊘ ⁶⁾	[mm]	112,5	175	237,5	300
Prozesskraft	[N]	1000	750	750	750

⁶⁾ Die angegebenen Werte entsprechen 25% des Nenndurchmessers.

Betriebs- und Umweltbedingungen					
Umgebungstemperatur	[°C]	0+40			
Lagertemperatur	[°C]	-10 +60			
Betriebsdruck	[bar]	28			
Stabverlusterkennung					
Einschaltdauer ⁷⁾	[%]	100			
Korrosionsbeständigkeit KBK ⁸⁾		2			

Beim Einsatz in Verbindung mit dem Motorcontroller CMMP-AS-C5-3A.
 Korrosionsbeständigkeitsklasse 2 nach Festo Norm 940 070

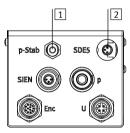
Bauteile mit mäßiger Korrosionsbeanspruchung. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre bzw. Medien, wie Kühl- und Schmierstoffe stehen.


Datenblatt

Werkstoffe Funktionsschnitt 1 Stabkinematik Montagerahmen Aluminium-Knetlegierung Zahnriemenachse →Internet: dge, egc 2 DGE/EGC Kugelzapfen Aluminium-Knetlegierung 3 Zugfeder hochlegierter Stahl, rostfrei 4 4 Stabpaar Kunststoff, carbonfaserverstärkt Kugelpfanne Polyamid 5 Kugel Keramik Fronteinheit Aluminium-Knetlegierung 6 Werkstoff-Hinweis LABS-haltige Stoffe enthalten

Stabverlusterkennung

7


Mit der Stabverlusterkenung kann ein Aushängen der Stäbe festgestellt und ein Not-Stopp eingeleitet werden.

Realisiert wird dies über eine permanente Druckluftüberwachung (Druckschalter im Schnittstellengehäuse am Rahmen integriert)

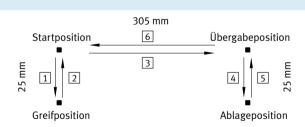
Hierzu werden die Kugel-Pfannen-Verbindungen der Fronteinheit mit einer Druckluft von 2 bar (rel.) beaufschlagt.

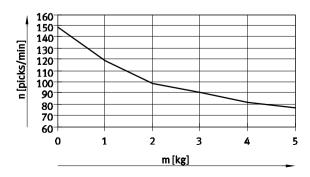
Kupfer- und PTFE-frei

Anschlüsse am Schnittstellengehäuse:

1 Druckluftversorgung für die Stabverlusterkennung. Im Schnittstellengehäuse wird die Druckluft auf 2 bar geregelt.

2 Drucksensor zur Überwachung der Stabverlusterkennung. Verbindungsleitung

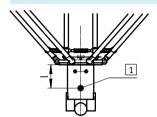

→ Seite 30


Pickrate in Abhängigkeit der Nennlast

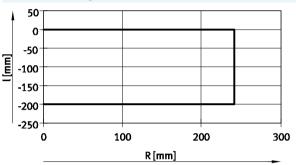
Die Kennwerte der Dynamik werden in so genannten 12"-Zyklen ermittelt. Das nachfolgend dargestellte Diagramm zeigt an, wie viele Zyklen in Abhängigkeit der Nennlast maximal möglich sind. Dabei wird eine Genauigkeit von ±0,5mm zu Grunde gelegt.

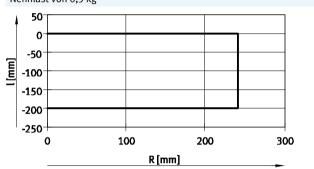
Ein 12"-Zyklus bedeutet:

- 1. Zur Greifposition
- Zur Startposition
- Zur Übergabeposition
- Zur Ablageposition
- Zur Übergabeposition
- Zur Startposition



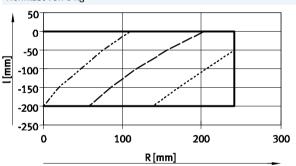
n= Zyklen pro Minute m= Nennlast

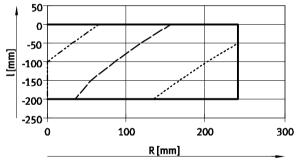

Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand l, vom Schwerpunkt der Nennlast m zur Front-


1 Schwerpunkt

EXPT-45

Nennlast von 0,1 kg


Nennlast von 0,5 kg


- a = 0 ... 100 m/s²

- a = 0 ... 100 m/s²

Nennlast von 1,5 kg

 $a = 0 ... 70 \text{ m/s}^2$

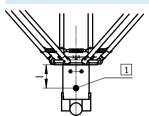
 $a = 100 \text{ m/s}^2$

 $a = 90 \text{ m/s}^2$

---- $a = 80 \text{ m/s}^2$

 $a = 0 ... 50 \text{ m/s}^2$

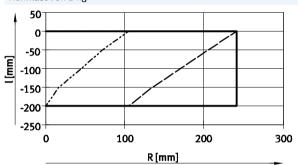
 $a = 80 \text{ m/s}^2$


 $a = 70 \text{ m/s}^2$

---- $a = 60 \text{ m/s}^2$

FESTO

Datenblat

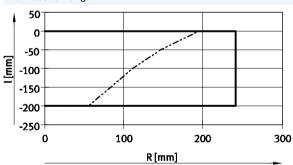

Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand I, vom Schwerpunkt der Nennlast m zur Fronteinheit

1 Schwerpunkt

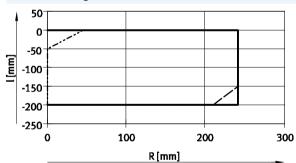
EXPT-45

Nennlast von 2 kg

 $a = 0 ... 40 \text{ m/s}^2$ ----- $a = 60 \text{ m/s}^2$


--- $a = 50 \text{ m/s}^2$

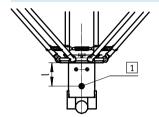
Nennlast von 3 kg



 $a = 0 ... 30 \text{ m/s}^2$ ---- $a = 40 \text{ m/s}^2$

Nennlast von 4 kg

 $a = 0 ... 20 \text{ m/s}^2$ ----- $a = 30 \text{ m/s}^2$ Nennlast von 5 kg


 $a = 0 ... 10 \text{ m/s}^2$ $a = 30 \text{ m/s}^2$

--- a = 20 m/s²

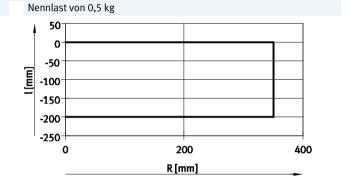
Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand l, vom Schwerpunkt der Nennlast m zur Front-

400

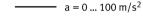
1 Schwerpunkt

EXPT-70

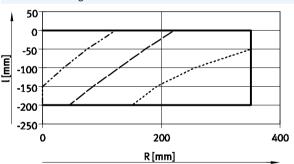
-200


-250

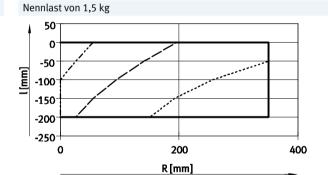
Nennlast von 0,1 kg


50 -50 -100 -150

200


R[mm]

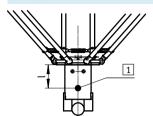
- a = 0 ... 100 m/s²



 $a = 0 ... 70 \text{ m/s}^2$

 $a = 100 \text{ m/s}^2$

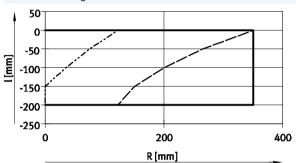
 $a = 90 \text{ m/s}^2$ ---- $a = 80 \text{ m/s}^2$


 $a = 0 ... 50 \text{ m/s}^2$

 $a = 80 \text{ m/s}^2$

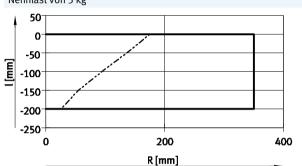
 $a = 70 \text{ m/s}^2$

FESTO

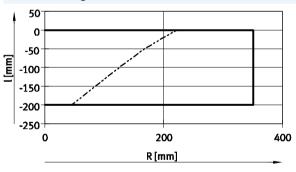

Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand l, vom Schwerpunkt der Nennlast m zur Front-

1 Schwerpunkt

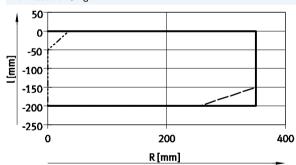
EXPT-70


Nennlast von 2 kg

 $a = 0 \dots 40 \text{ m/s}^2$


---- a = 60 m/s² - a = 50 m/s²

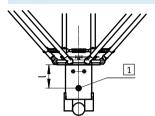
Nennlast von 3 kg


 $a = 0 ... 30 \text{ m/s}^2$ ---- $a = 40 \text{ m/s}^2$

Nennlast von 4 kg

 $a = 0 \dots 20 \text{ m/s}^2$ ---- $a = 30 \text{ m/s}^2$

Nennlast von 5 kg



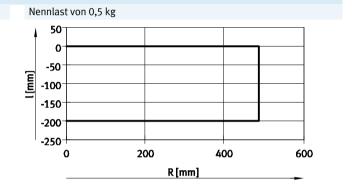
 $a = 0 ... 10 \text{ m/s}^2$ ---- $a = 30 \text{ m/s}^2$

-- a = 20 m/s²

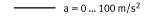
Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand l, vom Schwerpunkt der Nennlast m zur Fronteinheit

1 Schwerpunkt

400

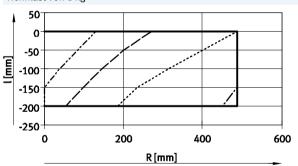

600

EXPT-95


Nennlast von 0,1 kg 50 -50 -100 -150 -200

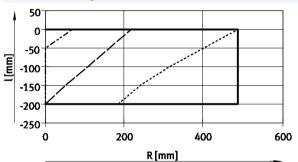
R[mm]

200



- a = 0 ... 100 m/s²

-250

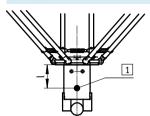

 $a = 0 ... 60 \text{ m/s}^2$

 $a = 100 \text{ m/s}^2$

 $a = 90 \text{ m/s}^2$

-- $a = 80 \text{ m/s}^2$ -- a = 70 m/s²

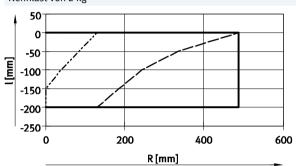
 $a = 0 ... 50 \text{ m/s}^2$


--- a = 80 m/s²

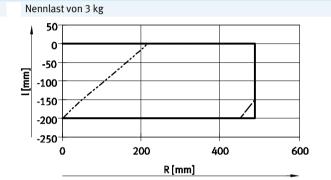
- a = 70 m/s² ---- $a = 60 \text{ m/s}^2$

FESTO

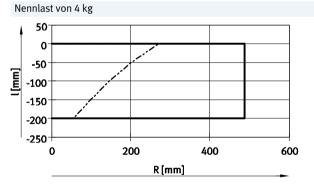
Datenblat


Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand I, vom Schwerpunkt der Nennlast m zur Fronteinheit

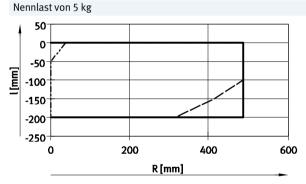
1 Schwerpunkt


EXPT-95

Nennlast von 2 kg


 $a = 0 ... 40 \text{ m/s}^2$

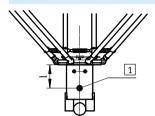
 $a = 60 \text{ m/s}^2$ $a = 50 \text{ m/s}^2$



 $a = 0 ... 20 \text{ m/s}^2$

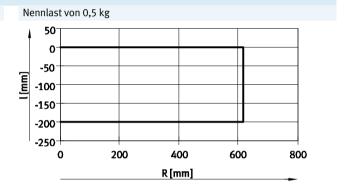
----- $a = 40 \text{ m/s}^2$ ---- $a = 30 \text{ m/s}^2$

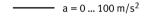
 $a = 0 ... 20 \text{ m/s}^2$ ----- $a = 30 \text{ m/s}^2$


 $a = 0 ... 10 \text{ m/s}^2$

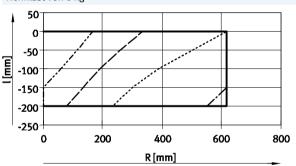
---- $a = 30 \text{ m/s}^2$

--- a = 20 m/s²

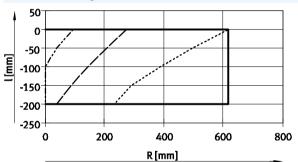

Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand l, vom Schwerpunkt der Nennlast m zur Fronteinheit


1 Schwerpunkt

EXPT-120


Nennlast von 0,1 kg 50 -50 -100 -150 -200 **-250** 200 400 600 800 R[mm]

- a = 0 ... 100 m/s²


 $a = 0 ... 60 \text{ m/s}^2$

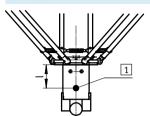
 $a = 100 \text{ m/s}^2$

 $a = 90 \text{ m/s}^2$ -- $a = 80 \text{ m/s}^2$

-- a = 70 m/s²

 $a = 0 ... 50 \text{ m/s}^2$

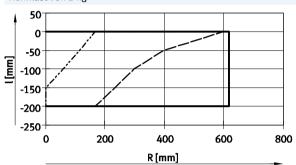
--- a = 80 m/s²


- a = 70 m/s²

---- $a = 60 \text{ m/s}^2$

FESTO

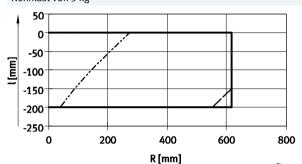
Datenblat


Max. Beschleunigung a in Abhängigkeit von der Position im Arbeitsraum R und dem Abstand I, vom Schwerpunkt der Nennlast m zur Fronteinheit

1 Schwerpunkt

EXPT-120

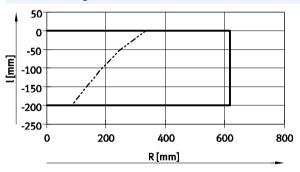
Nennlast von 2 kg



 $a = 0 ... 40 \text{ m/s}^2$

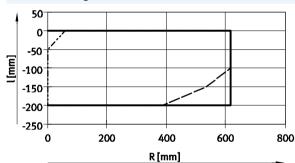
--- a = 50 m/s²

---- $a = 60 \text{ m/s}^2$



 $a = 0 ... 20 \text{ m/s}^2$

---- $a = 40 \text{ m/s}^2$


--- a = 30 m/s²

Nennlast von 4 kg

 $a = 0 ... 20 \text{ m/s}^2$ ----- $a = 30 \text{ m/s}^2$

Nennlast von 5 kg

 $a = 0 \dots 10 \text{ m/s}^2$

---- $a = 30 \text{ m/s}^2$

--- a = 20 m/s²

Datenblatt

Anforderungen an das Gestell

Die Positionier- und Bahngenauigkeit hängt maßgeblich vom Aufbau des Gestells ab.

Dabei sind folgende Einflüsse zu beachten:

- Steifigkeit Gestell
- Masse Gestell
- Masse Stabkinematik

 Anregefrequenz durch den dynamischen Betrieb der Stabkinematik

- Zyklen pro Minuten
- Dynamische Einstellungen für Beschleunigung und Ruck

Maximale Kräfte treten auf, wenn zwei Achsen entgegengesetzt zur dritten beschleunigen und dadurch auch eine Horizontalbewegung der Nennlast erfolgt.

Das Gestell muss so ausgelegt sein, dass die durch die Stabkinematik maximal auftretenden Kräfte mit der notwendigen
Sicherheit aufgenommen werden können

Der Richtwert für die erste Eigenfrequenz wird für das Gesamtsystem von mindestens 16 Hz angegeben.

Bei maximaler Dynamik der Achsen ergeben sich folgende Kräfte auf die Eckwinkel des Montagerahmens und somit auf die Befestigung im Gestell.

Baugröße		45	70	95	120
Vertikalkraft	[N]	±250	±290	±325	±475
Horizontalkraft	[N]	±145	±150	±200	±215

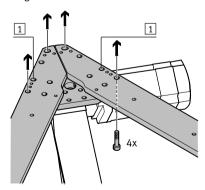
Befestigungsmöglichkeiten am Gestell

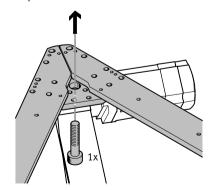
Die Befestigung der Stabkinematik muss grundsätzlich im Bereich der Eckwinkel des Montagerahmens erfolgen. In diesem Bereich muss für eine plane, verwindungssteife Auflagefläche gesorgt werden.

Zur Erreichung der Positioniergenauigkeit gelten für die Auflageflächen folgende Mindestanforderungen:

- Ebenheit = 0,05 mm
- Parallelität = 0,5 mm

Da der Nutabstand in dem 80x80-Profil 40mm beträgt, wurden die Bohrungen in den Eckwinkeln so angeordnet, dass das Profil in verschiedenen Positionen befestigt werden kann. Da bei der Demontage des Motors die Referenzierung der entsprechenden Achse verloren geht, sollten Montagebohrungen verwendet werden, bei denen der Motor nicht entfernt werden muss.


Die Bohrungen 1 sind , je nach Anbaulage des Motors, nicht zugänglich.

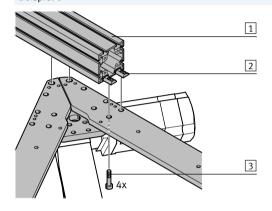

Direktbefestigung mit Schrauben Schrauben M8x...

Mit mindestens 4 Schrauben (M8) je Eckwinkel direkt am Gestell. Die 4 Schrauben sollen dabei möglichst weit auseinander liegen, um eine verwindungssteife Verbindung sicher zu stellen.

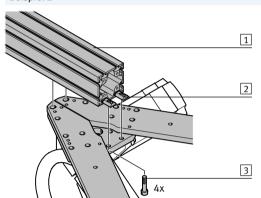
Mit 1 Schraube (M20) je Eckwinkel direkt am Gestell. Dazu befindet sich eine zentrale Bohrung an jedem Winkel.

Datenblatt

FESTO


Befestigungsmöglichkeiten am Gestell

Befestigung über Nutensteine – parallel zum Montagerahmen


1 Profil

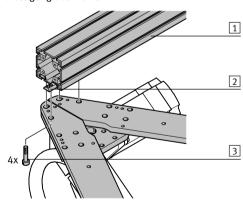
- 3 Schrauben
- (z. B. HMBS-80/80)
- (z. B. M8x35)
- 2 Nutenstein
 - (z. B. NST-HMV-8-2-M8)

Beispiel 1

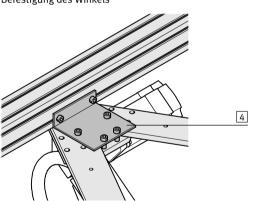
Beispiel 2

Befestigung über Nutensteine – quer zum Montagerahmen

- 1 Profil
- ۷
- 2 Nutenstein
 - (z. B. NST-HMV-8-2-M8)

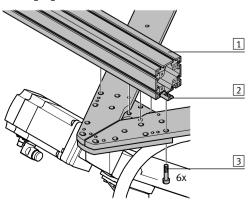

(z. B. HMBS-80/80)

- 3 Schrauben (z. B. M8x35)
- 4 Winkel

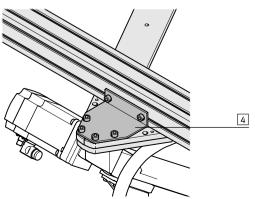

Die zusätzlichen Winkel in den nachfolgenden Beispielen sind notwendig, um die Verwindungssteifigkeit und die Auflagefläche zu erhöhen.

Beispiel 1

Befestigung des Profils



Befestigung des Winkels



Beispiel 2

Befestigung des Profils

Befestigung des Winkels

→ Internet: www.festo.com/catalogue/...

FESTO

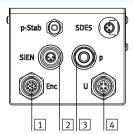
Technische Daten Fronteinheit

EXPT-...-T...

Mechanische Daten							
Тур		EXPT					
		T1	T2	T3	T4		
Konstruktiver Aufbau		elektromechanise	ches Drehmodul				
		-	mit Drehdurchführung	-	mit Drehdurchführung		
Motorart		Servomotor					
Baugröße		8	8	11	11		
Drehwinkel		endlos	·		·		
Pneumatischer Anschluss		-	G1/8	-	G1/8		
Nennweite	[mm]	-	4	-	4		
Normalnenndurchfluss	[l/min]	-	350	-	350		
Getriebeübersetzung		30:1	·		·		
Wiederholgenauigkeit	[°]	±0,01					
Max. Abtriebsdrehzahl	[1/min]	200					
Nenndrehmoment	[Nm]	0,75	0,75	1,8	1,8		
Spitzendrehmoment	[Nm]	1,8	1,8	4,5	4,5		
Max. Axialkraft	[N]	200	200	300	300		
Max. Kippmoment, statisch	[Nm]	15	15	40	40		
Zul. Lastmassenträgheitsmoment	[kgm ²]	0,0026	0,0026	0,006	0,006		
Einbaulage		beliebig					
Lastmasse für EXPT	[g]	640	690	850	900		

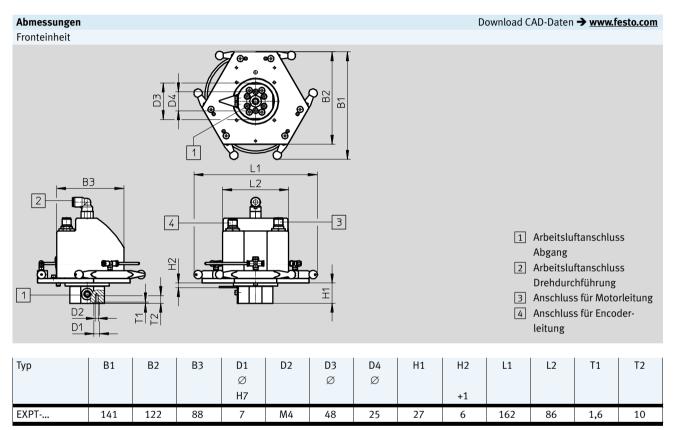
Elektrische Daten								
Тур		EXPT	EXPT					
		T1	T2	T3	T4			
Nennspannung	[V AC]	230						
Nennstrom	[A]	0,31	0,31	0,74	0,74			
Spitzenstrom	[A]	0,61	0,61	1,5	1,5			
Nennleistung	[W]	9,2	9,2	22,1	22,1			
Einschaltdauer	[%]	100	•	<u> </u>				
Messsystem ¹⁾		Encoder						

¹⁾ Referenzfahrt notwendig

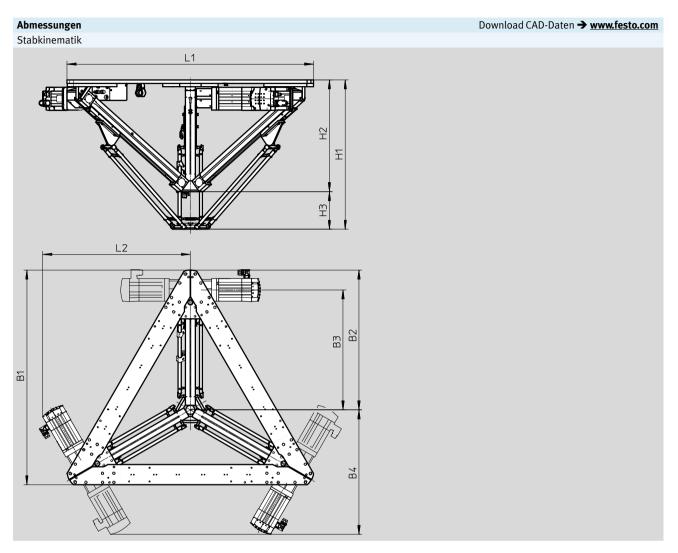

Betriebs- und Umweltbedingu	ingen						
Тур		EXPT					
		T1	T2	T3	T4		
Betriebsdruck	[bar]	_	-0,9 +10	-	-0,9 +10		
Umgebungstemperatur	[°C]	0 40		·			
Schutzart		IP40					
Werkstoff-Hinweis		RoHS konform					
Korrosionsbeständigkeit KBK ¹⁾		2					

Korrosionsbeständigkeitsklasse KBK 2 nach Festo Norm FN 940070
 Mäßige Korrosionsbeanspruchung. Innenraumanwendung bei der Kondensation auftreten darf. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die in direktem Kontakt zur umgebenden industrieüblichen Atmosphäre stehen.

FESTO

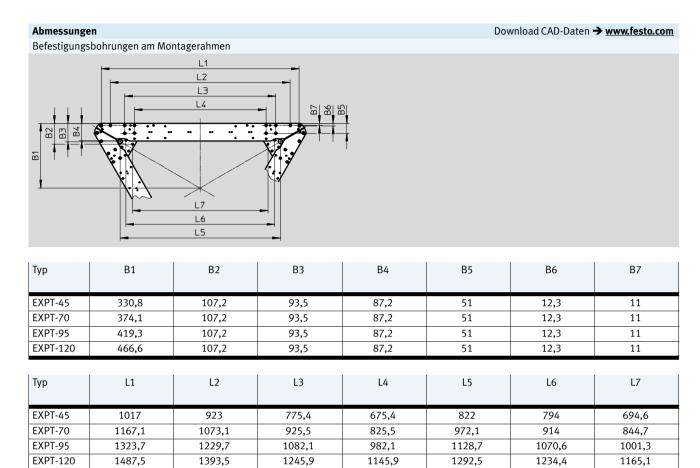

Datenblatt

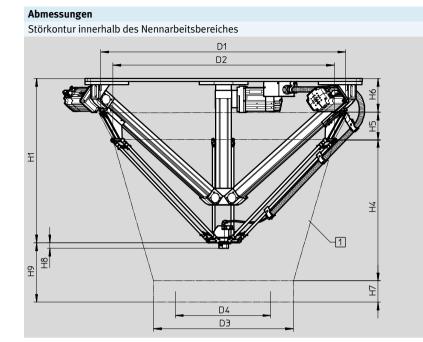
Anschlüsse am Schnittstellengehäuse:



Anschluss für:

- 1 Encoderleitung → Seite 30
- 2 Abfrage der Drehbewegung → Seite 30
- 3 Arbeitsluftanschluss für pneumatische Drehdurchführung
- 4 Motorleitung → Seite 30




Тур	B1	B2	В3	B4	H1	H2	Н3	L1	L2
EXPT-45	947	617	530	549	659	493	166	1088	652
EXPT-70	1077	703	622	590	727	561	166	1238	727
EXPT-95	1213	794	705	626	827	636	191	1394	803
EXPT-120	1355	888	800	672	944	710	234	1558	885

FESTO

Datenblatt

FESTO

Download CAD-Daten → www.festo.com

- 1 Störkontur
- D3 Durchmesser Störkontur
- D4 Durchmesser Nennarbeitsbereich
- H7 Höhe Nennarbeitsbereich
- H9 Abstand von Unterkante Greiferplatte zum Boden des Nennarbeitsbereiches
- Hinweis

Der Abstand des Arbeitsraumes bezieht sich auf die Unterkante der Greiferplatte. Bei den Varianten T1 bis T4 wird der Arbeitsraum um das Maß H8 nach unten verlängert. Dasselbe gilt für angebaute Greifsysteme, für die sich der Bezugspunkt immer um die Höhe des Greifsystems verschiebt.

Zusätzliche Maße für die Verlegung der Motorleitungen und Schläuche sind bei der Störkontur nicht berücksichtigt.

Тур	D1 ±5	D2 ±5	D3 ±5	D4	H1	H4	H5
EXPT-45	950	860	620	450	659	500	117
EXPT-70	1120	1035	870	700	727	614	117
EXPT-95	1400	1260	1120	950	827	760	141
EXPT-120	1590	1440	1370	1200	944	907	141

Тур	H6	H7		H8			
			EXPTT0	EXPTT1/T2	EXPTT3/T4		
EXPT-45	180	100	0	27	28,5	234	
EXPT-70	180	100	0	27	28,5	286	
EXPT-95	170	100	0	27	28,5	357	
EXPT-120	170	100	0	27	28,5	397	

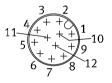
FESTO

Steckerbelegungen

Motor der Achsen

Motor

F	n	r	^	Ы	Δ	r


PIN	Funktion					
1	Phase U					
PE	PE (Schutzerde)					
3	Phase W					
4	Phase V					
Α	Temperatursensor M _T +					
В	Temperatursensor M _T -					
C	Haltebremse BR+					
D	Haltebremse BR-					

PIN	Funktion
1	-SENS
2	+SENS
3	DATA
4	DATA/
5	0 V
6	CLOCK/
7	CLOCK
8	UP

Motor der Fronteinheit

_						
E	n	_	^	А	0	١

PIN	Funktion	
1	U	
2	V	
3	W	
4	PE	

PIN	Funktion
1	A
2	A\
3	В
4	B\
5	Z
6	Z\
7	U
8	V
9	W
10	GND
11	5V
12	Schirm

Stabkinematik EXPT, TripodBestellangaben – Produktbaukasten

Baugröße		45	70	95	120	Bedin-	Code	Eintrag
						gungen		Code
M Baukasten-Nr.		569797	569798	569799	569800			
Produktart		EXPT Baureil	he T				EXPT	EXPT
Arbeitsraum	[mm]	450	-				-45	
	[mm]	-	700	-			-70	
	[mm]	-		950	-		-95	
	[mm]	-			1200		-120	
Antrieb		DGE-25		-			-E1	
		-		EGC-80			-E4	
Anbauelemente		ohne Drehan	ntrieb		-T0			
		Drehantrieb,	, Größe 8		-T1			
		Drehantrieb,	, Größe 8 mit pn		-T2			
		Drehantrieb,			-T3			
		Drehantrieb,	, Größe 11 mit p		-T4			
Anbaulage Motor		A1/A2/A3 hi		-HHH				
		A3 vorne, A1	/A2 hinten		-HHV			
		A2 vorne, A1	./A3 hinten		-HVH			
		A2/A3 vorne	, A1 hinten		-HVV			
		A1 vorne, A2	2/A3 hinten				-VHH	
		A1/A3 vorne	, A2 hinten		-VHV			
		A1/A2 vorne	, A3 hinten		-VVH			
		A1/A2/A3 vo	orne		-VVV			
Partikelschutz		Standard						
		_		geschützte /	Ausführung		-P8	

Zuordnungstabelle	
Stabkinematik EXPT	Motorcontroller CMMP (→ Seite 30)
EXPTT0	3x CMMP-AS-C5-3A
EXPTT0	3x CMMP-AS-C5-3A
EXPTT1 bis T4	3x CMMP-AS-C5-3A, 1x CMMP-AS-C2-3A
EXPTT1 bis T4	3x CMMP-AS-C5-3A, 1x CMMP-AS-C2-3A

- Hinweis Motorcontoller müssen separat

als Zubehör → Seite 30 bestellt werden.

Steuerung auf Anfrage.

M Mindestangaben O Optionen

-	Übertrag Bes	tel	lcode						
			EXPT	_	_	_	_	_	

Stabkinematik EXPT, TripodBestellangaben – Produktbaukasten

Bestelltabelle							
Baugröße	45	70	95	120	Bedin- gungen	Code	Eintrag Code
O Leitungslänge	ohne						
	5 m				1	-5K	
	10 m				1	-10K	
	15 m					-15K	
Voreinstellung	Standard						
	mit Kalibri	erung				-S	
M Dokumentationssprache	deutsch					-DE	
	englisch	englisch					
	spanisch					-ES	
	französisc	h		-FR			
	italienisch			-IT			
	russisch			-RU			
	chinesisch					-ZH	

¹ Die Leitungslänge von Motor- und Encoderleitung des Drehantriebs (Anbauelemente) beträgt immer 15 m, unabhängig von der Angabe im Produktbaukasten.

Hinweis

Zur Bestellung einer Stabkinematik nehmen sie bitte Kontakt zu ihrem lokalen Ansprechpartner von Festo auf.

Die Stabkinematik darf nur durch eine speziell geschulte Fachkraft (Robotikspezialist) in Betrieb genommen werden.

Folgende Kenntnisse sind erforderlich:

- Spezialist mit Robotik- und CoDeSys-Kenntnissen
- Kenntnisse im Umgang mit Motorcontroller CMMP
- Kenntnisse im Umgang mit der Stabkinematik

M	Mindestangaber
0	Optionen

Üb	ertrag Bestellcode			
-		-	-	

Bestellangaben									
	Kabellänge [m]	Teile-Nr.	Тур						
Verbindung vom Motor der Acl	hsen zum Motorcontroller								
	Motorleitung NEBM								
	5	550310	NEBM-M23G8-E-5-Q9N-LE8						
	10	550311	NEBM-M23G8-E-10-Q9N-LE8						
	15	550312	NEBM-M23G8-E-15-Q9N-LE8						
	X-Länge ¹⁾	550313	NEBM-M23G8-EQ9N-LE8						
	Encoderleitung NEBM								
	5	550318	NEBM-M12W8-E-5-N-S1G15						
	10	550319	NEBM-M12W8-E-10-N-S1G15						
	15	550320	NEBM-M12W8-E-15-N-S1G15						
	X-Länge ¹⁾	550321	NEBM-M12W8-EN-S1G15						
Verbindung vom Schnittsteller	ngehäuse zum Motorcontroller								
	Motorleitung NEBM								
	15	571907	NEBM-M12G4-RS-15-N-LE4						
	Encoderleitung NEBM								
	15	571915	NEBM-M12G12-RS-15-N-S1G15						
Verbindungsleitung NEBU für S	Stabverlusterkennung oder Ref								
	5	541334	NEBU-M8G3-K-5-LE3						
	10	541332	NEBU-M8G3-K-10-LE3						
	15	575986	NEBU-M8G3-K-15-LE3						

¹⁾ Maximal 25 m

Bestellangaben – Motorcontroller							
	Für Baugröße	Ausgangs-	Ausgangs-	Nennleistung	Teile-Nr.	Тур	
		spannung	Nennstrom				
		[V AC]	[A]	[VA]			
13	Für Stabkinematik						
	45 120	3x 0 270	5	1000	1622902	CMMP-AS-C5-3A-M0	
	Für Anbauelement						
	45 120	3x 0 270	2,5	500	1622901	CMMP-AS-C2-3A-M0	

30

Stabkinematik EXPT, Tripod Zubehör

Bestellangaben					
	für Baugröße	Beschreibung	Teile-Nr.	Тур	
Schutzschlauch MKG					
	45 120	pro Achse werden 2 m benötigt	3156318	MKG-23-PG-29-B	
Schlauchhalter EAHM					
	45 120	zur Befestigung des Schutz- schlauchs	3506553	EAHM-E10-TH-W29	
Winkelbausatz EAHM	Winkelbausatz EAHM				
	45 120	zur Befestigung des Schlauch-	2075203	EAHM-E10-AK	
		halters am Anschlussblock	2075842	EAHM-E10-AK-P8 ¹⁾	

¹⁾ In Verbindung mit der Variante EXPT-...-P8

Bestellangaben					
Destettunguben	für Baugröße	Beschreibung	Teile-Nr.	Тур	
Abdeckungsbausatz EASC-E10					
1,1	95	schützt den Arbeitsraum vor	3790894	EASC-E10-95	
	120	Verschmutzung durch Partikel • nur montierbar in Verbindung mit der Variante EXPTP8	3790896	EASC-E10-120	
Adapterbausatz EAHA					
	45 120	für Sauggreifer ESG-	1574224	EAHA-R2-M12P	
		(Haltergröße 2)			
		für Sauggreifer ESG-	1574227	EAHA-R2-M14P	
988		(Haltergröße 3 und 4)			

FESTO

Adapterbausatz DHAA, HAPG

Werkstoff:

Aluminium-Knetlegierung Kupfer- und PTFE-frei RoHS konform

- Hinweis

Der Bausatz beinhaltet die individuelle Befestigungsschnittstelle sowie das notwendige Befestigungsmaterial.

Greifer Parallelgreifer	Baugröße	Adapterba	uicatz
Parallelgreifer			lusatz
Parallelgreifer		Teile-Nr.	Тур
1. // //	DHPS, Standard		
	6	187566	HAPG-SD2-12
	10	184477	HAPG-SD2-1
	16	184478	HAPG-SD2-1
		1044/0	NAPU-3D2-2
	HGPT-B, robust	544050	DUAL C OF 40 DO 47
	16	564958	DHAA-G-Q5-12-B8-16
	20	564955	DHAA-G-Q5-16-B8-20
	25	537181	HAPG-SD2-25
	HGPL, robust mit Langhub		
	14-40, 14-60, 14-80	537310	HAPG-SD2-31
	HGPD, dicht		
	16	564958	DHAA-G-Q5-12-B8-16
	20	564955	DHAA-G-Q5-16-B8-20
	25	537181	HAPG-SD2-25
Dreipunktgreifer			
11// //	DHDS, Standard		
	16	187567	HAPG-SD2-13
	HGDT, robust		
	25	542439	HAPG-SD2-32
Radialgreifer			
11// //	DHRS, Standard		
	10	187566	HAPG-SD2-12
	16	184477	HAPG-SD2-1
	25	184478	HAPG-SD2-2
	HGRT, robust	-511,0	
	16	1273999	DHAA-G-Q5-16-B11-16
		12/3///	DIAN-0-Q-10-B11-10
Minkolgraifor	'		
Winkelgreifer // // //	DHWS, Standard		
1/4/41	10	187566	HAPG-SD2-12
	16	184477	HAPG-SD2-1
	25	184478	HAPG-SD2-2
		1044/0	iini 0 30 2-2