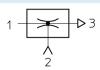

FESTO


Vacuum generators

Key features

FESTO

Product overview

Vacuum generator

All Festo vacuum generators have a single-stage design and operate according to the venturi principle.

The product families described below

have been designed for a wide range of applications. The different performance classes of the individual product families make it possible to select vacuum generators tailored to suit specific requirements.

Standard and inline ejectors

\/NI

Technical data → Internet: vn

- Nominal size 0.45 ... 3 mm
- Max. vacuum 93%
- Temperature range 0 ... +60 °C
- A range of extremely effective generators suitable for use directly in the workplace
- Available as straight or T-shaped housing
- Low space requirement
- Low-cost
- No wearing parts
- Extremely fast evacuation time
- Vacuum switch (optional)
- Optional with additional functions:
- integrated eject pulse
- electric control for vacuum ON/OFF
- combination of eject pulse and control

VAD-.../VAK-...

Technical data → Internet: vad

- Nominal size 0.5 ... 1.5 mm
- Max. vacuum 80%
- Temperature range -20 ...+80 °C
- Range of vacuum generators with sturdy aluminium casing
- VAK-...: Built-in reservoir
 VAD-...: Connection for additional external reservoir
- Maintenance-free
- VAK-...: Reliable setting down of workpieces

Vacuum generators Key features

FESTO

Compact ejectors

VADM-.../VADMI-...

- Nominal size 0.45 ... 3 mm
- Max. vacuum 84%
- Temperature range 0 ... +60 °C
- Compact design
- Minimal installation work required
- Short response times
- Built-in solenoid valve (on/off)
- VADMI-...: Additional built-in solenoid valve for ejector pulse
- · Filter with display

- Air-saving circuit (optional)
- Vacuum switch (optional)
- Reliable setting down of workpieces

VAD-M-.../VAD-M...-I-...

- Nominal size 0.7 ... 2 mm
- Max. vacuum 85%
- Temperature range 0 ... +40 °C
- Compact design
- Minimal installation work required
- Short response times
- Built-in solenoid valve (on/off)
- VAD-M-I-...: Additional built-in solenoid valve for ejector pulse
- Reliable setting down of workpieces

Technical data → Internet: vad-m

→ 8

Features

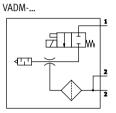
FESTO

At a glance

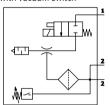
- Compact and sturdy design
- Components with numerous individual functions form a single unit
- Extremely short switching times thanks to integrated solenoid valves
- No external or additional components required
- Easily fitted thanks to compact dimensions and therefore particularly suitable for handling operations
- Cost effective assembly as the solenoid valve, vacuum generator and silencer are all in a single unit.
- Protection class IP65

- With manual override
- With integrated silencer for reducing exhaust noise
- With integrated filter for the air to be evacuated and a display window which shows the degree of filter contamination
- With or without integrated vacuum switch to monitor the vacuum with PNP or NPN output
- With 2 vacuum ports, optional

Vacuum generator VADM-.../-...-P/-N


The compressed air supply of these vacuum generators is controlled by the built-in solenoid valve.

When the electrical power supply is switched on, the valve is actuated and the flow of compressed air from 1 (P) to 3 (R) generates a vacuum at port 2 (V), operating on the ejector principle. Suction stops when the supply power to the valve is switched off.


The integrated silencer reduces exhaust noise to a minimum.

Built-in solenoid valve for:
 Vacuum ON/OFF

With the vacuum generators VADM-...-P/N the vacuum can be monitored by means of a vacuum switch.

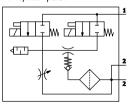
VADM-...-P/-N with vacuum switch

- 1 = Pressure supply port
- 2 = Vacuum port

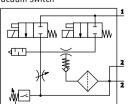
$\label{lem:vacuum generator VADMI-.../-...-P/-...-N} \ with \ ejector \ pulse \ and \ vacuum \ switch$

Compressed air enters the vacuum generator following the application of a voltage signal to the integrated solenoid valve, thereby creating a vacuum.

Once the voltage is switched off at the vacuum valve and switched on at the ejector valve, the vacuum is rapidly purged at port 2 as a result of the application of pressure.


The integrated silencer reduces

exhaust noise to a minimum.


- Two built-in solenoid valves for:
 - Vacuum ON/OFF
 - Ejector pulse
- · With sensing interface
- With integrated non-return valve as safety function

With the vacuum generators VADMI-...-P/-N the vacuum can be monitored by means of a vacuum switch.

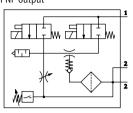
VADMI-... with ejector pulse

- 1 = Pressure supply port
- 2 = Vacuum port

FESTO

5

Feature

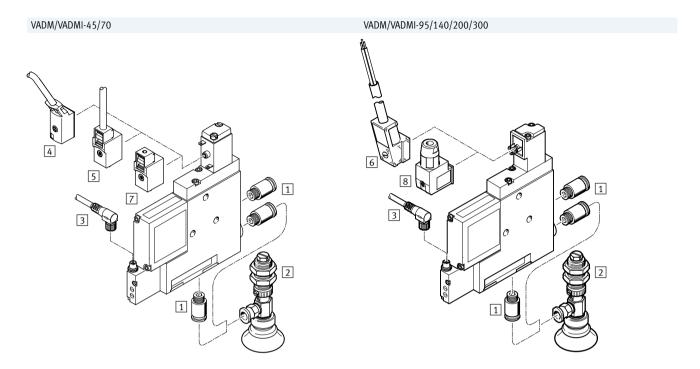

Vacuum generator VADMI-...-LS-P/N with ejector pulse, vacuum switch and air-saving circuit

This vacuum generator is identically constructed to the other VADMI types. In addition, however, this ejector has a built-in vacuum switch with airsaving circuit:

If the vacuum level falls below the required range, vacuum generation is activated automatically (operating principle of vacuum switch for VADMI-...-LS-P/N → 13).

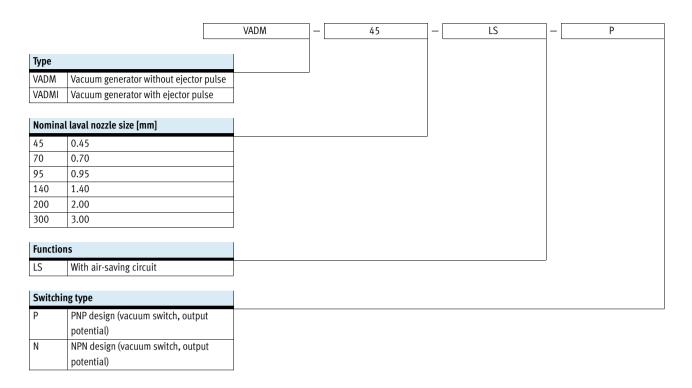
- Solenoid valve for vacuum generation
- Integrated silencer
- Integrated 40 µm filter with contamination indication
- With sensing interface for vacuum fault signal
- With integrated non-return valve as safety function
- With vacuum switch for pressure monitoring
- With 2 vacuum ports

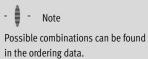
VADM-...-LS-P/N with air-saving circuit PNP output



- 1 = Pressure supply port
- 2 = Vacuum port

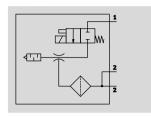
Vacuum generators VADM/VADMI Peripherals overview



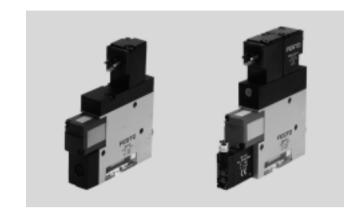


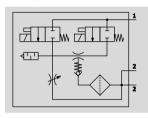
Mou	nting attachments and accessories			
		VADM/VADMI-45/70	VADM/VADMI-95/140/200/300	→ Page/Internet
1	Push-in fitting	_	_	quick star
	QS	•	_	
2	Suction gripper	•	•	esg
	ESG	_	_	
3	Connecting cable		_	nebu-m8
	NEBU-M8	-	_	
4	Connecting cable	•	_	kmyz-2
	KMYZ-2	_		
5	Plug socket with cable	•	_	kmyz-4
	KMYZ-4	_		
6	Plug socket with cable	_	•	kmeb
	KMEB-1/2		_	
7	Plug socket	•	_	mssd-zbzc
	MSSD-ZBZC	_		
8	Plug socket	_		mssd-eb
	MSSD-EB		_	
-	Suction cup holder			esh
	ESH	_	_	
-	Suction cup			ess
	ESS	_	_	
-	Illuminating seal	_	•	meb-ld
	MEB-LD		_	

Vacuum generators VADM/VADMI Type codes



Vacuum generators VADM/VADMI Technical data





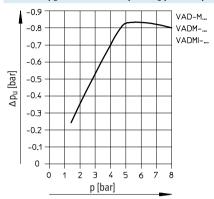
Operating pressure 1.5 ... 8 bar

VADMI-...

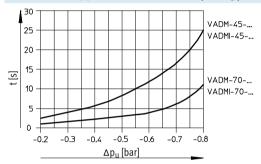
General technical data											
Nominal size	Nominal size		70	95	95 140 200		300				
Design		Slim rectangular									
Mounting position		Any									
Ejector features		High vacuum									
Type of mounting		Either: Via female thread, via through-holes									
Pneumatic connection 1/2		M5/M5	M5/G ¹ /8	G1/8/G1/8	G1/8/G1/4	G1/4/G3/8	G1/4/G3/8				
Nominal size of laval nozzle	[mm]	0.45	0.7	0.95	1.4	2.0	3.0				
Duty cycle	[%]	100	•	-							
Power consumption	[W]	1.4		1.5 piloted	1.5 piloted						
Protection class	stection class IP65										

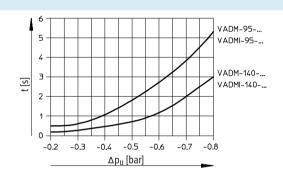
Note: This product conforms to ISO 1179-1 and to ISO 228-1

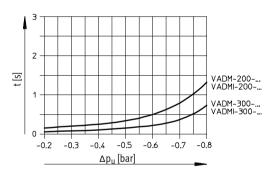
Operating and environmental conditions											
Nominal size	45	70	95	140	200	300					
Operating pressure [bar]	1.5 8		2 8								
Operating medium	Compressed air in accordance with ISO 8573-1:2010 [7:4:4]										
Note on operating/pilot medium	Operation with lubricated medium not possible										
Ambient temperature [°C]	0 +60										
Corrosion resistance class CRC ¹⁾	2										
Note on materials	Free of copper and PTFE										
Certification	c UL us - Recognized (OL)										


¹⁾ Corrosion resistance class CRC 2 to Festo standard FN 940070 Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere. $sphere\ typical\ for\ industrial\ applications.$

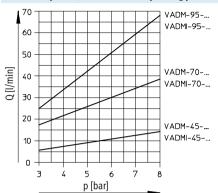
Weights [g]							
Nominal size	45	70	95	140	200	300	
VADM	60	140	210	290	320	340	
VADMP/-N	65	145	220	300	330	350	
VADMI	85	170	240	320	350	370	
VADMIP/-N/-LS-P	90	180	250	330	360	380	

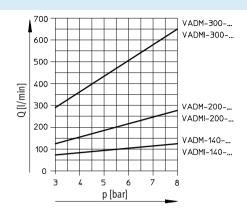

Vacuum generators VADM/VADMI Technical data


FESTO

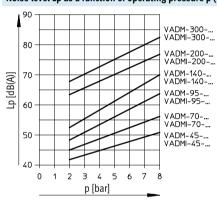

Vacuum Δp_u as a function of operating pressure p

Evacuation time t [s] for 1 litre volume at 6 bar operating pressure

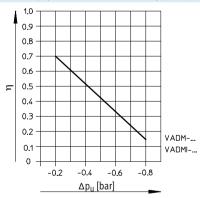

Air supply time for 1 litre volume at 6 ba	ar operating pressure ¹⁾		
Туре	With ejector pulse	Without ejector pulse	Max. flow rate
	[s]	[s]	[l/min]
VADM-45	-	5.9	-
VADMI-45	1.9	_	21
VADM-70	-	2.2	_
VADMI-70	0.59	-	48
VADM-95	-	1.18	_
VADMI-95	0.24	_	104
VADM-140	-	0.69	_
VADMI-140	0.19	-	265
VADM-200	-	0.29	-
VADMI-200	0.15	-	260
VADM-300	-	0.26	-
VADMI-300	0.2	-	250

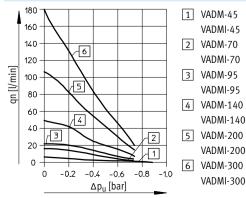

¹⁾ Time required to build up vacuum from -0.75 to -0.05 bar.

FESTO


Technical data

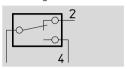
Air consumption Q as a function of operating pressure p

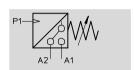



Noise level Lp as a function of operating pressure p (without suction flow)

Efficiency η as a function of vacuum Δp_u at P_{nom} 6 bar

Suction rate qn as a function of vacuum Δp_{u}



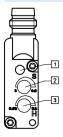

Vacuum generators VADM/VADMI Technical data

FESTO


Vacuum switch for vacuum generators VADM...-...-P/N

Circuit diagram

- Piezo-resistive vacuum switch with adjustable switching point and adjustable hysteresis
- Switching status display, yellow LED
- Electrical connection, polarity safe

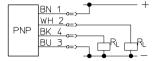


General technical data		
Pneumatic data		
Max. operating pressure	[bar]	00.95
Switching point	[bar]	0 –0.9 (adjustable)
Hysteresis	[bar]	0.05 0.5 (adjustable)
Temperature influence		≤ ±5 mbar/10K (on switching point)
Electrical data		
Operating voltage	[V DC]	24 (15 30)
Voltage drop	[V]	1.2 (at switch output)
Switch output current	[mA]	130
Max. intrinsic current	[mA]	25
consumption		
Max. switching delay	[ms]	5
Connection		Reverse polarity protected
Mechanical data		
Design		Piezo-resistive vacuum switch with adjustable switching point and hysteresis
Ambient conditions		
Protection class		IP65

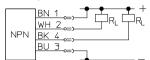
Operating and environmental conditions	perating and environmental conditions										
Ambient temperature [°C]	0 +60										
Note on materials	Free of copper and PTFE										
CE mark (see declaration of conformity)	To EU EMC Directive ¹⁾										
Certification	c UL us - Recognized (OL)										
	RCM Mark										

¹⁾ For information about the applicability of the component see the manufacturer's EC declaration of conformity at: www.festo.com/sp \rightarrow User documentation. If the component is subject to restrictions on usage in residential, office or commercial environments or small businesses, further measures to reduce the emitted interference may be necessary.

Vacuum switch control panel


- 1 Switching status display, yellow LED
- 2 Switching point adjustment
- 3 Hysteresis adjustment

Technical data


FESTO

Terminal allocation

PNP output

NPN output

BN = Brown

WH = White

BK = Black

BU = Blue

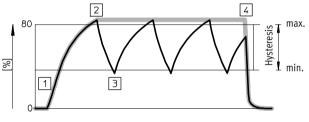
 $R_L = Load$

Pin allocation

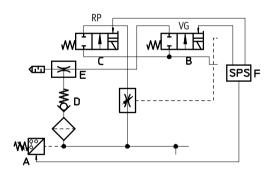
Brown: Positive terminal
 White: NC contact
 Blue: Negative terminal
 Black: NO contact

Energy-saving function with VADMI-...-P/N

The conventional vacuum switch → A cost-effective energy-saving measure


With the vacuum generators VADMI a maximum value is first set and then the hysteresis is regulated (reliable operating range). The lower limit defines the minimum value.

Once the vacuum level is within this range, reliable workpiece transport is guaranteed.


The vacuum generator VADMI is only activated by the external controller if the level drops below the minimum value and is deactivated again once that minimum value is regained.

A non-return valve prevents the vacuum level from being purged during the inactive phase of vacuum generation.

The functional sequence

Optimum vacuum curve
Actual vacuum curve

- RP Ejector pulse
- VG Vacuum on/off
- Vacuum generator
- D Non-return valve
- A Vacuum switch

Vacuum on

- 1 External controller F switches on the VG solenoid
 - → Valve for compressed air supply B is opened
 - → Vacuum generation E is activated

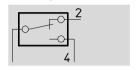
Vacuum stop

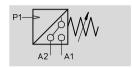
- 2 The specified maximum level is achieved:
 - → Pressure sensor A sends a signal to the external controller
 - igstar Controller switches the VG solenoid off
 - → Vacuum generation is interrupted
 - igwedge Non-return valve D prevents the vacuum level from being purged

Vacuum on

- 3 Leakage causes the vacuum level to drop to the minimum value
 - → Pressure sensor A sends a signal to the external controller F
 - → Controller F switches the VG solenoid B back on
 - → Vacuum generation E is active again
 - → Constant repetition of points 2 and 3

Cycle ended: Vacuum off


- 4 Transport process ended
 - → External controller (PLC) F deactivates VG solenoid B
 - → Vacuum generation E is ended
 - → External controller switches on ejector RP solenoid C
 - → Vacuum level at 0
 - → Workpiece is released


Vacuum generators VADM/VADMI Technical data

FESTO

Vacuum switch and cable set for vacuum generators with air-saving circuit VADMI-...-LS-P/N

Circuit diagram

- Piezo-resistive vacuum switch with adjustable switching point and adjustable hysteresis
- Air-saving circuit only in conjunction with supplied cable
- Switching status display, yellow LED
- Electrical connection, polarity safe

General technical data		
Pneumatic data		
Max. operating pressure	[bar]	01
Max. overload pressure	[bar]	5 (for t <1 min)
Switching point	[bar]	0 –0.9 (adjustable)
Hysteresis	[bar]	0.1 0.6 (adjustable)
Temperature influence		≤ ±10 mbar/10K (on switching point)
Electrical data		
Operating voltage	[V DC]	24 V (±10%, at VADMI-70-LS-P +10%-5%)
Voltage drop	[V]	1.2 (at switch output)
Switch output current	[mA]	130
Max. intrinsic current	[mA]	25
consumption		
Max. switching delay	[ms]	2 (with NPN cable distribution: 20 ms)
Connection		Reverse polarity protected
Mechanical data		
Design		Piezo-resistive vacuum switch with integrated air-saving circuit
Ambient conditions		
		Total
Protection class		IP65

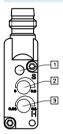
Operating and environmental conditions								
Ambient temperature [°C]	0 +60							
Note on materials	Free of copper and PTFE							
CE mark (see declaration of conformity)	To EU EMC Directive ¹⁾							
Certification	c UL us - Recognized (OL)							
	RCM Mark							

¹⁾ For information about the applicability of the component see the manufacturer's EC declaration of conformity at: www.festo.com/sp \Rightarrow User documentation. If the component is subject to restrictions on usage in residential, office or commercial environments or small businesses, further measures to reduce the emitted interference may be necessary.

Technical data

Function principle

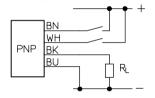
In conjunction with the supplied cable set, the vacuum generator VADMI-...-LS-P/N contains an airsaving circuit. The vacuum range to be used to hold the workpiece is set on the switch using both potentiometers. The switch generates a pulsating signal A2 which only actuates the solenoid for vacuum ON/OFF in the vacuum generator when the vacuum pressure has fallen below the selected upper limit value due to leakage etc.

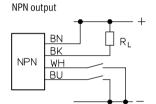

At all other times, the vacuum is maintained with the help of the non-return valve, even when the vacuum generator is not switched on. In addition to this, status signal A1 can be interrogated which is connected to +24 V during normal operation, but which is switched to 0 whenever vacuum pressure falls below the critical value by 150 mbar due to a malfunction.

This is the case, for example, if the workpiece has dropped off from the suction cup and it is no longer possible to generate the selected vacuum.

Accessories (included in scope of delivery):

Connecting cable
 The switch may only be operated
 with the included cable set.
 Connections 1, 2 and 4 can
 nevertheless be interchanged with
 one another without damaging the

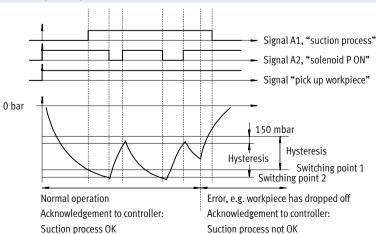

Vacuum switch control panel



- 1 Switching status display, yellow LED
- 2 Switching point adjustment
- 3 Hysteresis adjustment

Terminal allocation

PNP output



BN = Brown
WH = White
BK = Black
BU = Blue
R₁ = Load

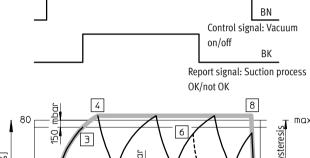
Pin allocation

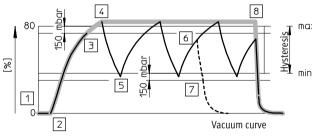
Brown: Positive terminal
 White: NC contact
 Blue: Negative terminal
 Black: NO contact

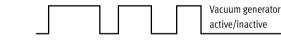
Switching points/hysteresis

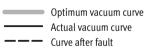
Technical data

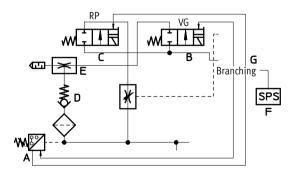
Energy-saving function and error reporting with VADMI-...-LS-P/N


The further development of the vacuum switch


In addition to the described functions, error reporting is also used as an additional energy-saving measure. This like the vacuum circuit is controlled via the vacuum switch.


If a suction cup does not pick up a workpiece properly or a tube bursts, the vacuum switch can report such an event to the external control unit (PLC) F so that this or the user can take the necessary steps.


Given the decentrally controlled switching function, external actuation of the vacuum circuit (air-saving circuit) would be superfluous. As a result there is significantly less wiring.


The functional sequence

- RP Ejector pulse
- VG Vacuum on/off
- E Vacuum generator
- D Non-return valve
- C Ejector pulse
- G Branching
- A Vacuum switch

Start signal

- 1 External controller F activates the pressure sensor
 - → Pressure sensor A checks the vacuum status
 - → No vacuum present

Vacuum on

- 2 Pressure sensor activates the VG solenoid B
 - → Valve for compressed air supply is opened
 - → Vacuum generation E is activated
- 3 Vacuum level 150 mbar below the maximum level is exceeded
 - → Pressure sensor sends an enable signal to external controller (PLC) F BK
 - → Transport process can start

Vacuum stop

- 4 The specified maximum level is achieved
 - → Pressure sensor A switches the VG solenoid off
 - → Compressed air supply stopped
 - → Vacuum generation E interrupted
 - → Non-return valve D prevents the vacuum level from being purged

Vacuum or

- 5 Leakage causes the vacuum level to drop to the minimum value
 - → Pressure sensor A switches the VG solenoid on again
 - → Vacuum generation E is active again

Fault: Transport stopped

- 6 Major leakage causes an overly large drop in the vacuum level
 - → Vacuum generator E cannot compensate for the drop in level
- 7 Vacuum level is 150 mbar below the minimum value
 - → Pressure sensor A sends an error message to the external controller (PLC) F BK
 - → External controller interrupts the transport process
 - → Vacuum generation E is ended

Cycle ended: Vacuum off

- 8 Transport process ended
 - → External controller (PLC) F deactivates VG solenoid
 - → Vacuum generation E is ended
 - → External controller F switches on ejector RP solenoid C WH
 - → Ejector pulse activated
 - → Workpiece is released

Technical data

FESTO

Connection to PLC

PNP and NPN switching of the VADMI-...-LS-P/N

The three control and supply cable harnesses are combined in a branching directly via the vacuum generator so that only one cable containing one signal wire and three

voltage supply wires need to be conducted from the branching to the PLC.

In principle there are two different signal characteristics with external control units (PLC) for the vacuum generator VADMI-LS, which differ only slightly in their mode of operation. As both versions are identical in terms of the vacuum generator and the vacuum switch, the signal flow is only converted in the branching, as this is the only difference between the models. The labelled plug-in connectors for the wiring harness are connected to the relevant elements of the VADMI-LS. The four-wire cable splice of the branching is connected to the control unit in the manner depicted below.

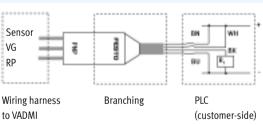
VADMI-...

VADMI without vacuum circuit

VADMI-...-P/N

VADMI with vacuum switching

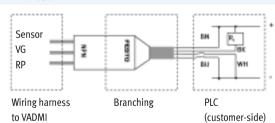
VADMI-...-P/N-LS



VADMI with air-saving circuit

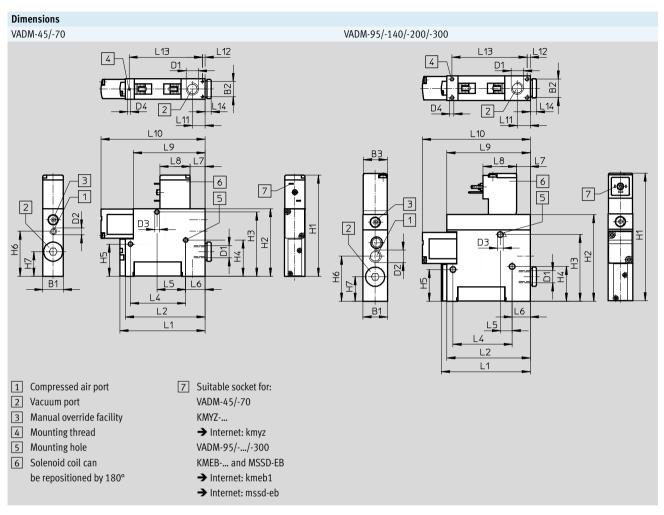
four-wire cable splice

PNP circuit


BN = Brown for vacuum generation

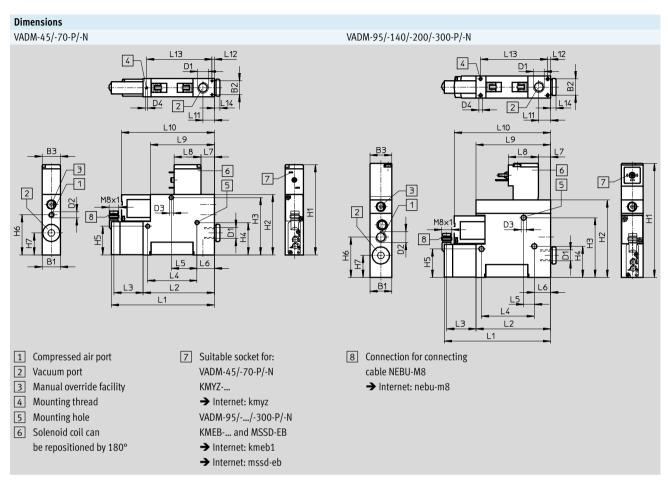
WH = White for ejector pulse RP

 $BK = Black for consumer R_L (PLC)$


BU = Blue for ground

NPN circuit

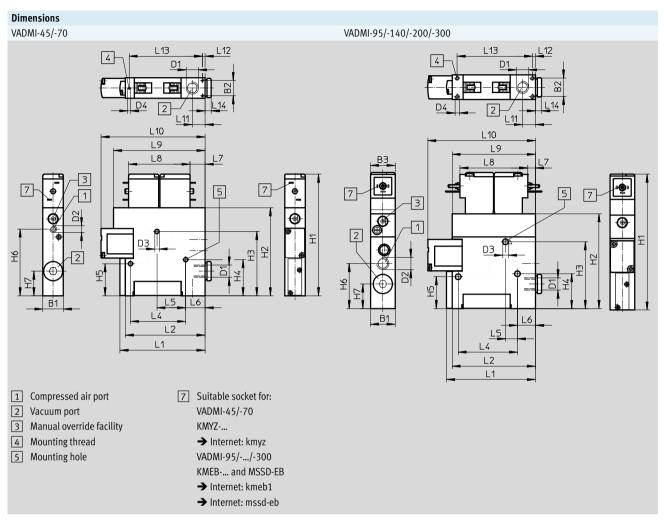
Vacuum generators VADM/VADMI Technical data


Туре	B1	B2	В3	D1	D2	D3	D4	H1	H2	Н3	H4	H5	Н6	H7
VADM-45	10	6.2	_	M5	M5	3.2	M2	64.4	44.4	40.8	23.8	23.8	29.6	18
VADM-70	15	11.2	_	G1/8	M5	3.2	M2	73.9	49.4	47	26.5	23.5	32.9	18
VADM-95	18	13.4	18	G1/8	G1/8	4.2	M2.5	93.4	63.4	48.9	25.5	23.3	33	18
VADM-140	22	16.6	18	G1/4	G1/8	5.2	M3	107.4	77.4	61.4	41.4	41.4	36	17.5
VADM-200	22	16.6	18	G3/8	G1/4	5.2	M3	113.4	83.4	67.7	41.4	41.4	40	19
VADM-300	22	16.6	18	G3/8	G1/4	5.2	M3	113.4	83.4	67.7	41.4	41.4	40	19

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45	45	41	33.6	25	3.6	11	16	41	56	7.9	1.9	36.3	4
VADM-70	62.3	58.3	40.4	21	14.2	11	22	52.4	76.1	9.4	1.9	53.7	4.5
VADM-95	65	61	43.3	8.7	13.2	9.7	24.5	61	78.8	9.5	2.3	55	4.5
VADM-140	88	84	26	12.5	28.5	9.7	24.5	61	96.8	13.8	2.3	79.4	5
VADM-200	88	84	26	12.5	28.5	9.7	24.5	61	101.8	12.5	2.3	79.4	5
VADM-300	124.4	120.4	26	12.5	28.5	9.7	24.5	61	137.4	12.5	2.3	115.8	5

Note: This product conforms to ISO 1179-1 and to ISO 228-1

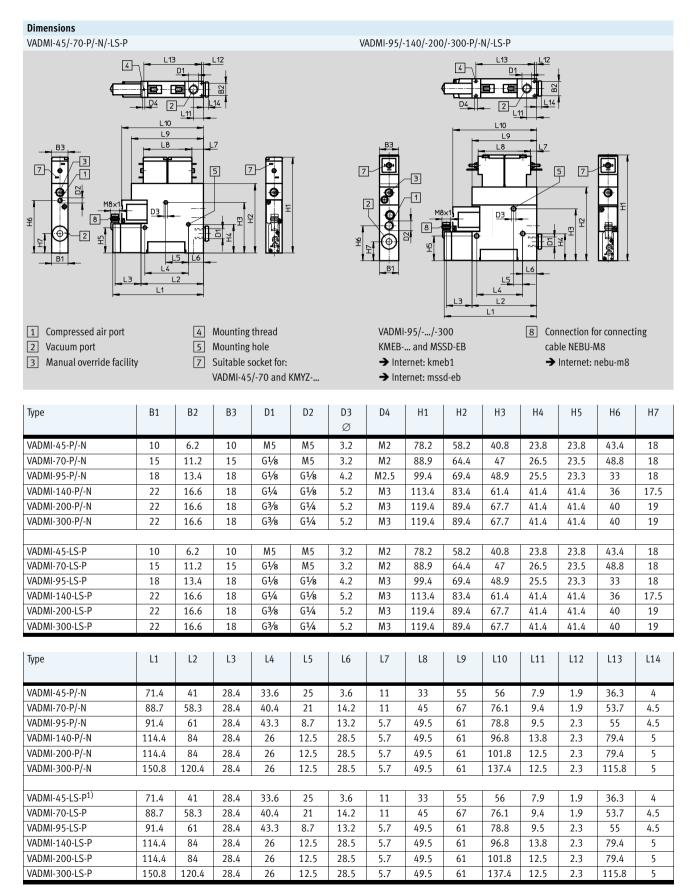
Technical data


Туре	B1	B2	В3	D1	D2	D3 Ø	D4	H1	H2	Н3	H4	H5	Н6	H7
VADM-45-P/-N	10	6.2	10	M5	M5	3.2	M2	64.4	44.4	40.8	23.8	23.8	29.6	18
VADM-70-P/-N	15	11.2	15	G1/8	M5	3.2	M2	73.9	49.4	47	26.5	23.5	32.9	18
VADM-95-P/-N	18	13.4	18	G1/8	G1/8	4.2	M2.5	93.4	63.4	48.9	25.5	23.3	33	18
VADM-140-P/-N	22	16.6	18	G1/4	G1/8	5.2	M3	107.4	77.4	61.4	41.4	41.4	36	17.5
VADM-200-P/-N	22	16.6	18	G3/8	G1/4	5.2	M3	113.4	83.4	67.7	41.4	41.4	40	19
VADM-300-P/-N	22	16.6	18	G3/8	G1/4	5.2	M3	113.4	83.4	67.7	41.4	41.4	40	19

Туре	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADM-45-P/-N	71.4	41	28.4	33.6	25	3.6	11	16	41	56	7.9	1.9	36.3	4
VADM-70-P/-N	88.7	58.3	28.4	40.4	21	14.2	11	22	52.4	76.1	9.4	1.9	53.7	4.5
VADM-95-P/-N	91.4	61	28.4	43.3	8.7	13.2	9.7	24.5	61	78.8	9.5	2.3	55	4.5
VADM-140-P/-N	114.4	84	28.4	26	12.5	28.5	9.7	24.5	61	96.8	13.8	2.3	79.4	5
VADM-200-P/-N	114.4	84	28.4	26	12.5	28.5	9.7	24.5	61	101.8	12.5	2.3	79.4	5
VADM-300-P/-N	150.8	120.4	28.4	26	12.5	28.5	9.7	24.5	61	137.4	12.5	2.3	115.8	5

Note: This product conforms to ISO 1179-1 and to ISO 228-1

Vacuum generators VADM/VADMI Technical data


Туре	B1	B2	В3	D1	D2	D3 Ø	D4	H1	H2	Н3	H4	H5	Н6	H7
VADMI-45	10	6.2	-	M5	M5	3.2	M2	78.2	58.2	40.8	23.8	23.8	43.4	18
VADMI-70	15	11.2	-	G1/8	M5	3.2	M2	88.9	64.4	47	26.5	23.5	48.8	18
VADMI-95	18	13.4	18	G1/8	G1/8	4.2	M2.5	99.4	69.4	48.9	25.5	23.3	33	18
VADMI-140	22	16.6	18	G1/4	G1/8	5.2	M3	113.4	83.4	61.4	41.4	41.4	36	17.5
VADMI-200	22	16.6	18	G3/8	G1/4	5.2	M3	119.4	89.4	67.7	41.4	41.4	40	19
VADMI-300	22	16.6	18	G3/8	G1/4	5.2	M3	119.4	89.4	67.7	41.4	41.4	40	19

Туре	L1	L2	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14
VADMI-45	45	41	33.6	25	3.6	11	33	55	56	7.9	1.9	36.3	4
VADMI-70	62.3	58.3	40.4	21	14.2	11	45	67	76.1	9.4	1.9	53.7	4.5
VADMI-95	65	61	43.3	8.7	13.2	5.7	49.5	61	78.8	9.5	2.3	55	4.5
VADMI-140	88	84	26	12.5	28.5	5.7	49.5	61	96.8	13.8	2.3	79.4	5
VADMI-200	88	84	26	12.5	28.5	5.7	49.5	61	101.8	12.5	2.3	79.4	5
VADMI-300	124.4	120.4	26	12.5	28.5	5.7	49.5	61	137.4	12.5	2.3	115.8	5

 $[\]mid \! \mid \cdot \! \mid$ Note: This product conforms to ISO 1179-1 and to ISO 228-1

Technical data

¹⁾ Plug sockets are included in the scope of delivery for type ... -LS-

 $[\]parallel$ Note: This product conforms to ISO 1179-1 and to ISO 228-1

Vacuum generators VADM/VADMI Technical data

Ordering da	ta								
Size	Solenoid coils	Without vacuum switch	With vacuum switch						
			PNP output	NPN output					
		Part No. Type	Part No. Type	Part No. Type					
Without ejec	tor pulse								
45	MZB	162500 VADM-45	162512 VADM-45-P	162513 VADM-45-N					
70	MYB	162501 VADM-70	162514 VADM-70-P	162515 VADM-70-N					
95	MEB	162502 VADM-95	162516 VADM-95-P	162517 VADM-95-N					
140	MEB	162503 VADM-140	162518 VADM-140-P	162519 VADM-140-N					
200	MEB	162504 VADM-200	162520 VADM-200-P	162521 VADM-200-N					
300	MEB	162505 VADM-300	162522 VADM-300-P	162523 VADM-300-N					
With ejector	pulse								
45	MZB	162506 VADMI-45	162524 VADMI-45-P	162525 VADMI-45-N					
70	MYB	162507 VADMI-70	162526 VADMI-70-P	162527 VADMI-70-N					
95	MEB	162508 VADMI-95	162528 VADMI-95-P	162529 VADMI-95-N					
140	MEB	162509 VADMI-140	162530 VADMI-140-P	162531 VADMI-140-N					
200	MEB	162510 VADMI-200	162532 VADMI-200-P	162533 VADMI-200-N					
300	MEB	162511 VADMI-300	162534 VADMI-300-P	162535 VADMI-300-N					

Ordering da	Ordering data										
Size	Solenoid coils	With vacuum switch									
		PNP output	NPN output								
		Part No. Type	Part No. Type								
With ejector	With ejector pulse and air-saving circuit										
45	MZB	171053 VADMI-45-LS-P	171054 VADMI-45-LS-N								
70	MYB	171055 VADMI-70-LS-P	171056 VADMI-70-LS-N								
95	MEB	171057 VADMI-95-LS-P	171058 VADMI-95-LS-N								
140	MEB	171059 VADMI-140-LS-P	171060 VADMI-140-LS-N								
200	MEB	171061 VADMI-200-LS-P	171062 VADMI-200-LS-N								
300	MEB	171063 VADMI-300-LS-P	171064 VADMI-300-LS-N								

With vacuum generators VADMI-...-LS-P/N, the plug sockets with cable for solenoid coils and vacuum switches are included in the scope of supply. These vacuum generators may only be operated with the cable supplied.