
Round cylinders EG

Round cylinders EG Key features and type codes

Key features

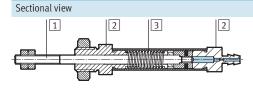
- Pneumatic cylinders in miniature design
- The slim design makes these cylinders especially suitable for compact assemblies, e.g. in testing systems for keyboards or mobile phones.
- Single-acting
- Minimal weight: 2 to 24 g
- Ready for installation
- Corrosion-resistant
- Barbed fitting connection for plastic tubing with standard I.D.

Type codes

		EG —	2,5	 5]-	PK2
Туре						
Single-ac	ting					
EG	Round cylinder]				
Piston \varnothing	[mm]					
Stroke [m	1m]					
Pneumati	ic connection					
PK-2	Barbed fitting connection for 2 mm plastic					
	tubing					
PK-3	Barbed fitting connection for 3 mm plastic	7				
	tubing					

Round cylinders EG

Function	
=	
-Ø-	Diameter 2.5 6 mm
-T-	Stroke length 5 25 mm


General technical data												
Piston Ø		2.5		4	6							
Stroke	[mm]	5	10	5	10	15	20	5	10	15	20	25
Design		Piston										
		Cylinder barrel										
		Piston rod at one e	end									
Mode of operation		Single-acting, pusl	hing									
Pneumatic connection		PK-2						PK-3				
Type of mounting		Via lock nut						_				
Piston rod thread		Ø 1		M2				M3				
Cushioning		None						At one	end, no	on-adjus	stable	
Position sensing		None										
Mounting position		Any										
Product weight	[g]	2	2	4	5	5	6	19	20	20	23	24

Operating and environmental condi	tions			
Piston \varnothing		2.5	4	6
Operating pressure	[bar]	3.5 7		3 7
Operating medium		Compressed air in accordance with ISC	0 8573-1:2010 [7:-:-]	
Ambient temperature	[°C]	+5 +60		
Corrosion resistance class CRC ¹⁾		2		

1) Corrosion resistance class 2 according to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Forces [N]													
Piston Ø		2.5		4	6								
Stroke	[mm]	5	10	5	10	15	20	5	10	15	20	25	
Theoretical force at 6 bar, advancing		1.9		4.8	4.7	4.9	4.9	11.8					
Theoretical spring return force		•											
min.		0.5		1.5	1.7	1.8	1.5	4.1	3.1	2.0	3.1	2.5	
max.		1.0		2.7	2.8	2.6		5.2					

Materials

Pisto	on \varnothing	2.5	4	6
1	Piston rod	High-alloy steel		
2	Bearing and end cap	High-alloy steel		
3	Cylinder barrel	Nickel-plated brass		High-alloy steel
-	Seals	Nitrile rubber	Thermoplastic	Nitrile rubber
			polyurethane elastomer	
	Note on materials	RoHS-compliant		

FESTO

Round cylinders EG

Dimensions																www.ie:	sto.com/	
EG-2,5/-4														2		vith star ng torqu 0.25 Nr		
Туре	AM	B	1	B2	D1	D2 Ø	D ¢	03 Ø	KK	L1	L2	2	L3	L4	L5	=	31	=©2
EG-2,5-5-PK-2 EG-2,5-10-PK-2	-	1.	6	-	M2.5	2.65	3.	.5	Ø1	29 38	- 3.1	5	3	1.5	5		-	4
EG-4-5-PK-2 EG-4-10-PK-2 EG-4-15-PK-2 EG-4-20-PK-2	6	3		1.6	M4	2.65	1	5	M2	41 50 59 64	6		5	7	5		4	5
			1											2	ingitterin	ng torqi		
	۱ ۸M L4	-				L1			EQ						EG-6: 8.			
		B1				L1 D3 Ø	D4 Ø	D5 Ø	KK		L2		L4				=©2	=53
	L4	B1			D2	D3				L1 75 80 85 102 107			<u>t</u>		EG-6: 8.	5 Nm		-⊂3 9
Type EG-6-5-PK-3 EG-6-10-PK-3 EG-6-15-PK-3 EG-6-25-PK-3 EG-6-25-PK-3	AM		B2	D1	D2 Ø	D3 Ø	Ø	Ø	KK	75 80 85 102	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4	B2	D1	D2 Ø 3.4 ke	D3 Ø	Ø 10	Ø	KK	75 80 85 102	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4	B2 2.4	D1 M8x1 Stro [mm 5	D2 Ø 3.4 ke	D3 Ø 7 Part N 1588	Ø 10 10 . T 3 E	Ø 8 īype G-2,5-5	КК М3	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5	D2 Ø 3.4 ke	D3 Ø 7 Part N 1588 1588 1588	Ø 10 10. T 3 E 4 E 5 E	Ø 8 5 5 6 6 2,5-5 5 6 6 2,5-1 5 6 6 4-5-P	КК М3 -РК-2 0-РК-2 К-2	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5 10	D2 Ø 3.4 ke	D3 Ø 7 Part N 1588 1588 1588 1588	Ø 10 10. T 3 E 4 E 5 E 6 E	Ø 8 5 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	-PK-2 0-PK-2 K-2 PK-2	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Type EG-6-5-PK-3 EG-6-10-PK-3 EG-6-15-PK-3 EG-6-25-PK-3 EG-6-25-PK-3	L4 AM 15	4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5	D2 Ø 3.4 ke	D3 Ø 7 Part N 1588 1588 1588	Ø 10 10. T 3 E 4 E 5 E 6 E 7 E	Ø 8 5 5 6 6 2,5-5 5 6 6 2,5-1 5 6 6 4 -5-P	-PK-2 0-PK-2 PK-2 PK-2 PK-2	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5 10 15 20 5	D2 Ø 3.4 ke	D3 Ø 7 7 Part N 1588 1588 1588 1588 1588 1588 1588 158	Ø 10 10 10 10 10 7 E 8 E 8 E 1 E	Ø 8 6-2,5-5 6-2,5-1 6-2,5-1 6-4-10- 6-4-15- 6-4-15- 6-4-20- 6-6-5-P	-PK-2 0-PK-2 PK-2 PK-2 PK-2 PK-2 PK-3	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4 Pist 2.5 4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5 10 15 20 5 10	D2 Ø 3.4 ke	D3 ∅ Ø 7 7 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1589 1589	Ø 10 10 10 10 10 10 10 10 10 10	Ø 8 6-2,5-5 6-2,5-1 6-4-5-P 6-4-10- 6-4-15- 6-4-20- 6-6-5-P 6-6-10-	-PK-2 0-PK-2 PK-2 PK-2 PK-2 PK-2 FK-3 PK-3	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	
Image: Second state st	L4 AM 15	4 Pist 2.5 4	B2 2.4	D1 D1 M8x1 Stro [mm 5 10 5 10 15 20 5	D2 Ø 3.4 ke	D3 Ø 7 7 Part N 1588 1588 1588 1588 1588 1588 1588 158	Ø 10 10 10 10 10 10 10 10 10 10	Ø 8 6-2,5-5 6-2,5-1 6-2,5-1 6-4-10- 6-4-15- 6-4-15- 6-4-20- 6-6-5-P	-PK-2 O-PK-2 WK-2 PK-2 PK-2 PK-2 PK-3 PK-3 PK-3	75 80 85 102 107	L2	L3	L4	L5	EG-6: 8.	5 Nm =℃1	=©2	

4

Product Range and Company Overview

A Complete Suite of Automation Services

Our experienced engineers provide complete support at every stage of your development process, including: conceptualization, analysis, engineering, design, assembly, documentation, validation, and production.

Custom Automation Components Complete custom engineered solutions

Custom Control Cabinets Comprehensive engineering support and on-site services

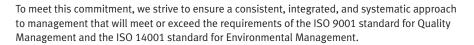
Complete Systems Shipment, stocking and storage services

The Broadest Range of Automation Components

With a comprehensive line of more than 30,000 automation components, Festo is capable of solving the most complex automation requirements.

Electromechanical Electromechanical actuators, motors, controllers & drives

Pneumatics Pneumatic linear and rotary actuators, valves, and air supply


PLCs and I/O Devices PLC's, operator interfaces, sensors and I/O devices

Supporting Advanced Automation... As No One Else Can!

Festo is a leading global manufacturer of pneumatic and electromechanical systems, components and controls for industrial automation, with more than 12,000 employees in 56 national headquarters serving more than 180 countries. For more than 80 years, Festo has continuously elevated the state of manufacturing with innovations and optimized motion control solutions that deliver higher performing, more profitable automated manufacturing and processing equipment. Our dedication to the advancement of automation extends beyond technology to the education and development of current and future automation and robotics designers with simulation tools, teaching programs, and on-site services.

Quality Assurance, ISO 9001 and ISO 14001 Certifications

Festo Corporation is committed to supply all Festo products and services that will meet or exceed our customers' requirements in product quality, delivery, customer service and satisfaction.

© Copyright 2008, Festo Corporation. While every effort is made to ensure that all dimensions and specifications are correct, Festo cannot guarantee that publications are completely free of any error, in particular typing or printing errors. Accordingly, Festo cannot be held responsible for the same. For Liability and Warranty conditions, refer to our "Terms and Conditions of Sale", available from your local Festo office. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of Festo. All technical data subject to change according to technical update.

FSC Printed on recycled paper at New Horizon Graphic, Inc., FSC certified as an environmentally friendly printing plant.

Festo North America

Festo Regional Contact Center

5300 Explorer Drive Mississauga, Ontario L4W 5G4 Canada

USA Customers:

For ordering assistance, Call: 1.800.99.FESTO (1.800.993.3786) Fax: 1.800.96.FESTO (1.800.963.3786) Email: customer.service@us.festo.com For technical support, Call: 1.866.GO.FESTO (1.866.463.3786) Fax: 1.800.96.FESTO (1.800.963.3786)

Email: product.support@us.festo.com Canadian Customers:

 Call:
 1.877.GO.FESTO (1.877.463.3786)
 Fax:
 1.877.FX.FESTO (1.877.393.3786)

 Email:
 festo.canada@ca.festo.com
 Fax:
 festo.canada@ca.festo.com

USA Headquarters

Festo Corporation 395 Moreland Road P.O. Box 18023 Hauppauge, NY 11788, USA www.festo.com/us

USA Sales Offices

Appleton North 922 Tower View Drive, Suite N Greenville, WI 54942, USA

Boston 120 Presidential Way, Suite 330 Woburn, MA 01801, USA

Chicago 1441 East Business Center Drive Mt. Prospect, IL 60056, USA Dallas

1825 Lakeway Drive, Suite 600 Lewisville, TX 75057, USA

Detroit – Automotive Engineering Center 2601 Cambridge Court, Suite 320 Auburn Hills, MI 48326, USA

New York 395 Moreland Road Hauppauge, NY 11788, USA Silicon Valley

4935 Southfront Road, Suite F Livermore, CA 94550, USA

Central USA

Festo Corporation 1441 East Business Center Drive Mt. Prospect, IL 60056, USA Phone: 1.847.759.2600 Fax: 1.847.768.9480

United States

USA Headquarters, East: Festo Corp., 395 Moreland Road, Hauppauge, NY 11788 Phone: 1.631.435.0800; Fax: 1.631.435.8026; Email: info@festo-usa.com www.festo.com/us

Canada

Headquarters: Festo Inc., 5300 Explorer Drive, Mississauga, Ontario L4W 5G4 Phone: 1.905.624.9000; Fax: 1.905.624.9001; Email: festo.canada@ca.festo.com www.festo.ca

Mexico

Headquarters: Festo Pneumatic, S.A., Av. Ceylán 3, Col. Tequesquinahuac, 54020 Tlalnepantla, Edo. de México Phone: 011 52 [55] 53 21 66 00; Fax: 011 52 [55] 53 21 66 65; Email: Festo.mexico@mx.festo.com www.festo.com/mx

 Western USA

 Festo Corporation

 4935 Southfront Road,

 Suite F

 Livermore, CA 94550, USA

 Phone: 1.925.371.1099

 Fax:
 1.925.245.1286

Festo Worldwide

Argentina Australia Austria Belarus Belgium Brazil Bulgaria Canada Chile China Colombia Croatia Czech Republic Denmark Estonia Finland France Germany Great Britain Greece Hong Kong Hungary India Indonesia Iran Ireland Israel Italy Japan Latvia Lithuania Malaysia Mexico Netherlands New Zealand Norway Peru Philippines Poland Romania Russia Serbia Singapore Slovakia Slovenia South Africa South Korea Spain Sweden Switzerland Taiwan Thailand Turkey Ukraine United States Venezuela

www.festo.com