

Linear gantries

Movements in 2D:
a linear gantry consists of a gantry axis and a yoke drive.

- High mechanical rigidity and sturdy design
- Pneumatic and electrical components - freely combinable
- As electrical solution - variable positioning/any desired intermediate positions

Range of application:

- Ideal for long gantry strokes
- Often used for feeding applications
- Workpiece masses up to 5 kg (effective load up to 10 kg)
- Long gantry strokes up to 3 m and heavy loads up to 10 kg
- High requirements on system resistance to torsion

Example: construction materials industry
Handling, palletising and packing of ceramic tiles

Requirements

- High dynamic response
- Gentle acceleration and braking
- Jerk-free movement
- Good positioning flexibility

Solution

- Linear gantry with toothed belt axes and cantilever axis
- Complete solution, including vacuum gripper

Higher effective loads of up to 50 kg on request

* With the pneumatic drive DGC, can be used as duo axis

Standard linear gantry LP 50

Effective load up to $50 \mathbf{~ k g}$

Motor controller package on

 electric axesServo motor: EMMS-AS
Controller: CMMS/P-AS (CMMD)

Technical data

		Stroke/mm	Intermed. position End position	Repetition accuracy/mm	
Z-axis	\uparrow			Intermediate position	
SP	EGC-185-BS-KF	0 ... 1000	Any	± 0.02	± 0.02
SP	DNCE-63 with FENG	0 ... 200	Any	± 0.02	± 0.02
Y-axis	\longleftrightarrow				
ZR	2 xEGC-185-TB-KF ***	0 ... 8500	Any	± 0.08	± 0.08
SP	$2 \times$ EGC-185-BS-KF ***	0 ... 3000	Any	± 0.02	± 0.02
P	DGC-63 + FA ***	0 ... 5000	1*	± 0.02	$\pm 0.02 / \pm 0.1$
PS	DGCl-63 + FA ***	0 ... 2000	2/any**	Max. ± 0.4	Max. $\pm 0.4 / \pm 2$

* More than 1 on request
** 2 with SPC11/CMPX, any with SPC200/CMAX
*** Max. Z-stroke 1000 mm
Grey shading: drive components in the illustration

Reference for cycle times

Z-axis

Y-axis

Note

Selection matrix

Types of handling units
\rightarrow Pages 6 to 9

Handling components
\rightarrow Page 95

Gripping/rotating
Adaptation options
\rightarrow Page 71

Control cabinets

\rightarrow Page 92

Frames

\rightarrow Page 78

CAD drawings/

CAD hotline
2D and 3D drawings
\rightarrow
Tel. +49 (0)711 347-4667

Individual project engineering and cycle time calculation
 \rightarrow
 Tel. +49 (0)711 347-4381

Fax enquiry

Form
\rightarrow Page 101

Note

An operating pressure of
6 bar is assumed for all the pneumatic drives shown here.

Overview of Festo control products

	FED-CEC Integrated controller FED-CEC	CPX terminal	
	Single axis (point-to-point asynchronous)		
Maximum number of possible axes	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).
Motion	- Point-to-point asynchronous - Every axis moves with its own pre-defined parameter - The axes do not reach their end positions at the same time and the path is not defined		
			-2.5D interpolation - PLC Open
Special features	Integrated controller in a display screen	Function integration on the CPX valve platform	
			- CNC editor - DXF import - Cam disk editor
Application examples	- Handling systems - Pick \& place, palletising		Path control, bonding, cutting, handling, flying saw, cam disk
Programming environment	CoDeSys	CoDeSys	CoDeSys + Softmotion

Recommended: 8 axes
Note: one axis is treated as a CANopen node.
128 nodes are possible (as defined by CANopen specifications).

Max. 6 interpolated axes, of which max. 3 basic axes and 1 orientation axis and max. 3 dependent auxiliary axes that are interpolated together with the kinematics system.

Additional single axes (not interpolated together with others) can be controlled via the integrated CoDeSys PLC. Recommended: 16 axes.

3D contour interpolation with an orientation axis for kinematics systems with up to 4 degrees of freedom.
E.g. 3D gantry with an axis of rotation on the front end.

	-2.5D interpolation - PLC Open	CoDeSys control: point-to-point asynchronous
- Powerful PLC - Encoder interface - Interrupt function - Fast clock pulse inputs - Profibus master - Two Canbus masters - RS 232/ RS 485-A/422-A		- Economical design and configuration with the Festo Configuration Tool (FCT) - Simple programming of motions with Festo Teach Language (FTL), no specialist expertise required - Optional teach pendant with 2 -channel permission button - Reduced speed in manual override mode - Automatic repositioning when continuing interrupted motions - Simple teaching of positions - Definition of tools, allowing easy use of multiple grippers - Real orientation axes on the front end - Integrated kinematics models e.g. for Cartesian systems, tripod, H - and T -gantries

	\bullet CNC editor \bullet DXF import \bullet Cam disk editor		\bullet Increased flexibility with the inte- grated CoDeSys PLC, e.g. for the integration of vision systems - Tracking function for applications involving selecting items from a conveyor belt \bullet Speed-independent path switching points with time compensation, e.g. for bonding applications - Complete automation of a cell is possible
- Handling systems			
\bullet Pick \& place, palletising	Path control, bonding, cutting, han- dling, flying saw, cam disk	Handling, palletising, bonding, metered dispensing, painting, cutting	Tracking applications such as pro- cessing of moving parts on a convey- or belt or synchronised kinematics movement with up to 6D
CoDeSys	CoDeSys + Softmotion	Festo Teach Language (FTL)	FTL + CoDeSys

