Elektroschlitten EGSK/EGSP

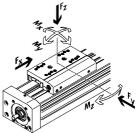
FESTO

Elektromechanische Antriebe

FESTO

Auswahlhilfe

Übersicht von Zahnriemen- und Spindelachsen


Zahnriemenachsen

- Geschwindigkeiten bis 10 m/s
- ullet Beschleunigungen bis 50 m/s 2
- Wiederholgenauigkeiten bis ±0,08 mm
- Hübe bis 8 500 mm (längere Hübe auf Anfrage)
- Flexible Motoranbindungen

Spindelachsen

- Geschwindigkeiten bis 2 m/s
- ullet Beschleunigungen bis 20 m/s²
- Wiederholgenauigkeiten bis ±0,003 mm
- Hübe bis 3 000 mm

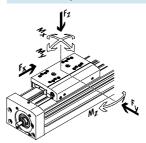
Zahnriemenachsen						
Тур	F _x	v	Mx	Му	Mz	Eigenschaften
	[N]	[m/s]	[Nm]	[Nm]	[Nm]	
Kugelumlauf-Schwerlastf	ührung					
EGC-HD-TB						
	450	3	140	275	275	flachbauende Antriebseinheit mit steifem, geschlossenem
3	1 000	5	300	500	500	Profil
	1 800	5	900	1 450	1 450	präzise und belastbare Duo-Schienenführung
						• ideal als Grundachse für Linienportale und Auslegerachsen
Kugelumlaufführung					•	
EGC-TB-KF						
	50	3	3,5	10	10	• steifes, geschlossenes Profil
	100	5	16	132	132	präzise und belastbare Schienenführung
	350	5	36	228	228	kleine Antriebsritzel reduzieren erforderliches Antriebs-
	800	5	144	680	680	moment
The state of the s	2 500	5	529	1 820	1 820	platzsparende Positionsabfrage
ELGR-TB						
Po	50	3	2,5	20	20	kostenoptimierte Stangenführung
	100	3	5	40	40	einbaufertige Einheit
	350	3	15	124	124	belastbare Kugelbuchsen für dynamischen Betrieb
Rollenführung						
ELGA-TB-RF						
	350	10	11	40	40	robuste Rollenführung
	800	10	30	180	180	Führung und Zahnriemen durch Abdeckband geschützt
	1 300	10	100	640	640	Geschwindigkeiten bis 10 m/s
						geringeres Gewicht als Achsen mit Schienenführungen
						germgeree comant and remove the commence and an arrigen
Gleitführung						
ELGA-TB-G						
	350	5	5	30	10	Führung und Zahnriemen durch Abdeckband geschützt
	800	5	10	60	20	für einfache Handlingaufgaben
	1 300	5	120	120	40	als Antriebselement für externe Führungen
		-				unempfindlich bei schwierigen Umgebungsbedingungen
						,
ELGR-TB-GF						
	50	1	1	10	10	kostenoptimierte Stangenführung
	100	1	2,5	20	20	einbaufertige Einheit
	350	1	1	40	40	robuste Gleitbuchsen für Einsatz in schwierigen Umge-
						bungsbedingungen
▼	1		1		1	

Elektromechanische Antriebe

FESTO

Auswahlhilfe

Übersicht von Zahnriemen- und Spindelachsen


Zahnriemenachsen

- Geschwindigkeiten bis 10 m/s
- Beschleunigungen bis 50 m/s²
- Wiederholgenauigkeiten bis ±0,08 mm
- Hübe bis 8 500 mm (längere Hübe auf Anfrage)
- Flexible Motoranbindungen

Spindelachsen

- Geschwindigkeiten bis 2 m/s
- ullet Beschleunigungen bis 20 m/s 2
- Wiederholgenauigkeiten bis ±0,003 mm
- Hübe bis 3 000 mm

Koordinatensystem

pindelachsen						
yp	F _X	V	Mx	Му	Mz	Eigenschaften
	[N]	[m/s]	[Nm]	[Nm]	[Nm]	
ugelumlauf-Schwerl	astführung					
EGC-HD-BS						
	300	0,5	140	275	275	flachbauende Antriebseinheit mit steifem, geschlossenen
3	600	1,0	300	500	500	Profil
	1 300	1,5	900	1 450	1 450	 präzise und belastbare Duo-Schienenführung
						• ideal als Grundachse für Linienportale und Auslegerachse
ugelumlaufführung	·			·		
EGC-BS-KF						
S	300	0,5	16	132	132	• steifes, geschlossenes Profil
2.	600	1,0	36	228	228	präzise und belastbare Schienenführung
	1 300	1,5	144	680	680	• für höchste Anforderungen an Geschwindigkeit,
	3 000	2,0	529	1 820	1 820	Beschleunigung und Momentaufnahme
						 platzsparende Positionsabfrage
EGSK						
	57	0,33	13	3,7	3,7	Spindelachsen mit höchster Präzision, Kompaktheit und
	133	1,10	28,7	9,2	9,2	Steifigkeit
	184	0,83	60	20,4	20,4	Kugelumlaufführung und Kugelgewindetrieb ohne Kugel-
	239	1,10	79,5	26	26	kette
	392	1,48	231	77,3	77,3	lagerhaltige Standardausführungen
EGSP						
	112	0,6	36,3	12,5	12,5	Spindelachsen mit höchster Präzision, Kompaktheit und
	212	0,6	81,5	31,6	31,6	Steifigkeit
	466	2,0	90,3	32,1	32,1	Kugelumlaufführung mit Kugelkette
	460	2,0	258	94	94	Kugelgewindetrieb bei Baugrößen 33, 46 mit Kugelkette

Elektroschlitten EGSK/EGSP

FESTO

Merkmale

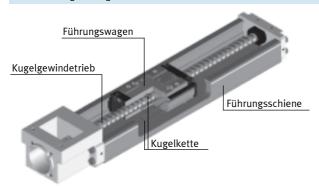
Auf einen Blick

Präzision in Stahl gebettet

Die neue Generation elektrischer Schlittenachsen EGSK und EGSP überzeugt durch Präzision, Wiederholgenauigkeit, Kompaktheit und Steifigkeit.

Beide Achsbaureihen bilden ein komplettes und im Design einheitliches Angebot, mit hoher Lebensdauer und standardisierten Anbau-Schnittstellen. Das U-förmige Stahl-Gehäuse dient gleichzeitig als Führungsschiene. Der Schlitten vereinigt Linear-Führungselemente und Spindelmutter des Kugelgewindetriebs in einem Bauteil. Dies vermeidet die Summierung von Fertigungs-Toleranzen.

Beide Baureihen gibt es in drei Genauigkeitsklassen, optional mit Zusatzschlitten, die Baureihen 33 und 46 auch in Kurzschlittenausführung.


Elektroschlitten EGSK

- Kugelumlaufführung und Kugelgewindetrieb ohne Kugelkette
- Standardausführungen lagerhaltig

Elektroschlitten EGSP

- Kugelumlaufführung mit Kugelkette
- Bei Baugröße 33, 46 Kugelgewindetrieb mit Kugelkette
- Wartungsarm
- Gleichmäßiges Laufverhalten mit sehr geringer Geräuschentwicklung

Linearführung mit Kugelkette

Bei der Linearführung zirkulieren vier Kugelreihen innerhalb des Führungswagens. Im belasteten Bereich laufen die Kugeln zwischen den feingeschliffenen Laufrillen von Führungswagen und Führungsschiene, bis sie durch die Umlenkstücke in den Endplatten und die Rücklaufkanäle zurückgeführt werden. Aufgrund des sehr steif ausgelegten Führungswagens können präzise

Linearbewegungen mit beeindruckender Dynamik ausgeführt werden. Die vier Kugelreihen sind jeweils in einem Kontaktwinkel von 45° angeordnet, so dass der Führungswagen gleiche Tragzahlen in beiden radialen Koordinatenrichtungen besitzt. Daher ist dieser Führungstyp in jeder Einbaulage für die unterschiedlichsten Belastungsrichtungen einsetzbar.

Kennwerte der Achsen

Die Angaben in der Tabelle sind Maximalwerte.

Die genauen Werte für die einzelnen Varianten sind dem entsprechenden Katalog-Datenblatt zu entnehmen.

Ausführung	Baugröße	Arbeitshub	Geschwin-	Wiederhol-	Vorschub-	Führun	gseigens	chaften		
			digkeit	genauigkeit	kraft	Kräfte	und Mom	ente		
						Fy	Fz	Mx	My	Mz
		[mm]	[m/s]	[µm]	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
Elektroschlitten EGSK										→ 8
	15	25 1 00	0,33	±3	57	1 185	1 185	13	3,7	3,7
	20	25 125	1,10	±3	133	2 204	2 204	28,7	9,2	9,2
	26	50 200	0,83	±3	184	3 528	3 528	60	20,4	20,4
	33	100 630	1,10	±3	239	3 920	3 920	79,5	26	26
A se	46	200 840	1,48	±3	392	7 809	7 809	231	77,3	77,3
	•	•	•	•	•		•			
Elektroschlitten EGSP										→ 24
	20	25 125	0,6	±3	112	2 929	2 929	36,3	12,5	12,5
	26	50 200	0,6	±3	212	5 028	5 028	81,5	31,6	31,6
	33	100 630	2	±3	466	4 5 5 9	4 559	90,3	32,1	32,1
	46	200 840	2	±3	460	8 935	8 935	258	94	94

Elektroschlitten EGSK/EGSP

FESTO

→44

→44

Merkmale

Gesamtsystem aus Elektroschlitten, Motor, Motorcontroller und Motoranbausatz

Elektroschlitten mit Kugelumlaufführung

Motor

- 1 Servomotor EMME-AS, EMMS-AS
- 2 Schrittmotor EMMS-ST

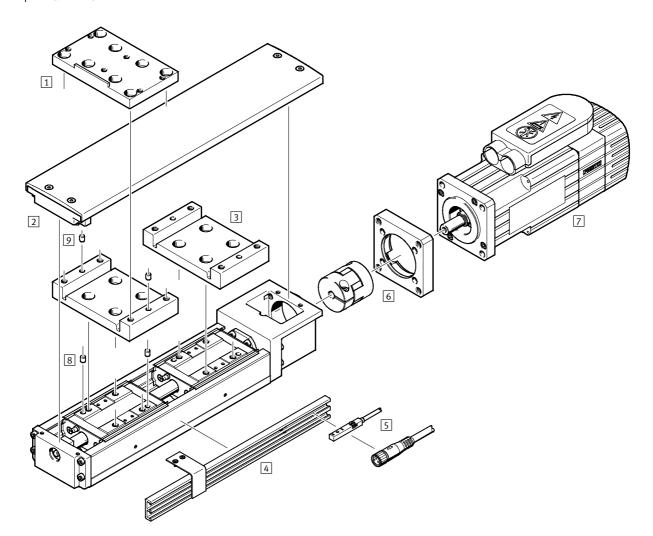
- Hinweis

Für die Elektroschlitten EGSK, EGSP und die Motoren gibt es speziell aufeinander abgestimmte Komplettlösungen.

Motorcontroller

- Datenblätter → Internet: motorcontroller
- 1 Servomotor Controller CMMP-AS, CMMS-AS
- 2 Schrittmotor Controller CMMS-ST

Motoranbausatz

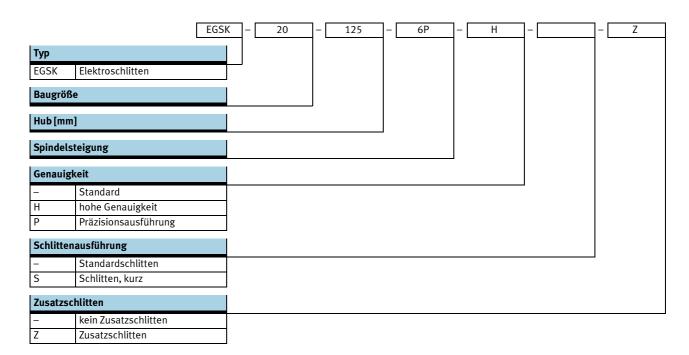


Bausatz besteht aus:

- Motorflansch
- Kupplung
- Schrauben

Elektroschlitten EGSK/EGSPPeripherieübersicht

FESTO


Elektroschlitten EGSK/EGSPPeripherieübersicht

FESTO

Zube	hör		
	Тур	Kurzbeschreibung	→ Seite/Internet
1	Kreuzverbindungs-Bausatz	zur rechtwinkligen Befestigung einer Aufbauachse EGSK/EGSP auf dem Schlitten	39
	EHAM-S1	einer Basisachse EGSK/EGSP. Die Aufbauachse ist jeweils eine Baugröße kleiner	
		als die Basisachse.	
2	Abdeckungsbausatz	zur Abdeckung des nach oben offenen Achsprofils. Im Bausatz ist ein Schlitten-	41
	EASC-S1	adapter EASA-S1 enthalten	
3	Schlittenadapter	wird zur Befestigung der Nutzlast in Verbindung mit dem Abdeckungsbausatz bei	40
	EASA-S1	Achsvarianten mit Zusatzschlitten benötigt	
4	Sensorleiste	• zur Befestigung des induktiven Näherungsschalters SIES-8M am Elektro-	43
	EAPR-S1-S	schlitten	
		Schaltfahnen sind im Lieferumfang enthalten	
5	Näherungsschalter	induktiver Näherungsschalter, für T-Nut	44
	SIES-8M		
6	Axialbausatz	für axialen Motoranbau (besteht aus: Kupplung und Motorflansch)	37
	EAMM-A		
7	Motor	speziell auf die Achse abgestimmte Motoren mit oder ohne Bremse	37
	EMMS		
8	Zentrierstift	zur Zentrierung von Lasten und Anbauteilen auf dem Schlitten	44
	ZBS		
9	Zentrierstift	zur Zentrierung von Lasten und Anbauteilen auf dem Schlittenadapter	44
	ZBS		

FESTO

Typenschlüssel

FESTO

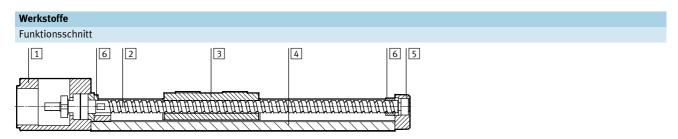
Datenblatt

Funktion

Allgemeine Technische Date	n													
Baugröße			15 ²⁾		20		26		33		46			
Spindelsteigung			1	2	1	6	2	6	6	10	10	20		
	Code ¹⁾													
Konstruktiver Aufbau			Elektromechanische Linearachse mit Kugelumlaufspindel											
Führung			Kugelum	laufführu	ng									
Einbaulage			beliebig											
Befestigungsart der Nutzlast			Innenge	winde	_									
			Zentrierh	ıülse	Passstift									
Arbeitshub ³⁾	-	[mm]	25 100)	25 125	5 125 50 200		0	100 6	00	200 800			
	S	[mm]	-				-		130 630		240 8	40		
Max. Vorschubkraft	-/H ⁴⁾	[N]	36	19	69	72	116	116	150	148	264	192		
F _{x,max}	P ⁵⁾	[N]	57	31	110	133	184	184	239	183	392	343		
Max. Antriebsdrehmoment	-/H ⁴⁾	[Ncm]	0,6	0,6	1,1	6,9	3,7	11	14	24	42	61		
M _{Antr,max}	P5)	[Ncm]	0,9	1,0	1,8	13	5,9	18	23	29	62	109		
Leerlaufdrehmoment	-/H	[Ncm]	0,4	0,4	0,5	0,5	1,5	1,5	7	7	10	10		
M _{leer}	Р	[Ncm]	0,8	0,8	1,2	1,2	4,0	4,0	15	15	17	17		
Max. Drehzahl ⁶⁾		[1/min]	9 600	9 900	11 400	7 900	8 400	5 900	4 700	4 700	3 100	3 100		
Max. Geschwindigkeit ⁶⁾	-/H	[m/s]	0,16	0,33	0,19	0,79	0,28	0,59	0,47	0,79	0,52	1,05		
	Р	[m/s]	0,16	0,33	0,19	1,10	0,28	0,83	0,66	1,10	0,74	1,48		
Max. Beschleunigung		[m/s ²]	10	•	10		10	•	20	•	20	•		
Referenzierung			induktive	er Näheru	ngsschalt	er SIES-8	M							

- 1) Variantencode → 8
- variatiencoue → o
 Baugröße 15 gibt es nur mit den Genauigkeitsklassen H und P
 Maximaler Verfahrweg → 17
- In Verbindung mit einem Zusatzschlitten reduziert sich der Arbeitshub um die Länge des Zusatzschlittens und den Abstand zwischen beiden Schlitten.
- 4) Belastungen basieren auf Lebensdauervorgabe 5 x 10⁸ Umdrehungen
- 5) Belastungen basieren auf Lebensdauervorgabe 1,25 x 108 Umdrehungen
 6) Reduzierte Geschwindigkeiten bei Baugrößen 33 und 46 mit langen Hüben → 11

Betriebs- und Umweltbedingungen		
Umgebungstemperatur	[°C]	0+40
Relative Luftfeuchtigkeit	[%]	0 95 (nicht kondensierend)


Gewichte [kg]						
Baugröße		15	20	26	33	46
	Code ¹⁾					
Grundgewicht bei	-	0,16	0,38	0,78	1,38	5,17
0 mm Hub ²⁾	S	-	-	-	1,28	4,77
Gewichtszuschlag	-	0,12	0,27	0,42	0,63	1,27
pro 100 mm Hub						
Bewegte Masse		0,04	0,07	0,15	0,31	0,91
	S	-	-	-	0,17	0,57
Zusatzschlitten Z	_	0,04	0,07	0,15	0,31	0,91
	S	-	-	-	0,17	0,57

- 1) Variantencode → 8
- 2) Inkl. Schlitten, ohne Zusatzschlitten

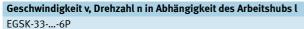
Datenblatt

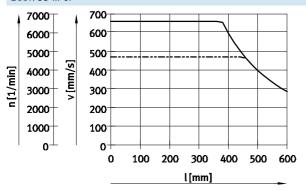
Genauigkeitsdaten [µm]							
Baugröße			15	20	26	33	46
	Hub	Code ¹⁾					
Wiederholgenauigkeit ²⁾		-	_	±10	±10	±10	±10
		Н	±4	±5	±5	±5	±5
		Р	±3	±3	±3	±3	±3
Laufparallelität	25 340	Н	20	25	25	25	35
	400 540	Н	-	_	-	35	35
	600 640	Н	-	_	-	40	40
	800 840	Н	-	-	-	-	50
	25 340	Р	10	10	10	10	15
	400 540	Р	-	_	-	15	15
	600 640	Р	-	-	-	20	20
Max. Reversierspiel		_	-	20	20	20	20
		Н	10	10	10	20	20
		Р	2	3	3	3	3

Variantencode → 8
 Die erzielbare Wiederholgenauigkeit eines Motor-Achs-Systems wird auch von der Winkelauflösung des Motors und den gewählten Reglerparametern beeinflusst. Die angegebene Wiederholgenauigkeit kann daher nicht mit allen Motoren erreicht werden

Elektroschlitten	
1 Antriebsdeckel	Aluminium-Druckguss, beschichtet
2 Spindel	Stahl
3 Schlitten	Stahl
4 Profil	hochlegierter Stahl
5 Abschlussdeckel	Aluminium-Druckguss, beschichtet
6 Puffer	Ethylenvinylacetet-Copolymer
Werkstoff-Hinweis	RoHS-konform
	LABS-haltige Stoffe enthalten

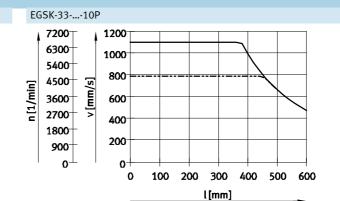
Massenträgheitsmo	ment											
Baugröße					20		26		33		46	
Spindelsteigung	pindelsteigung				1	6	2	6	6	10	10	20
	Code ¹⁾											
Jo		[kg mm ²]	0,030	0,033	0,087	0,143	0,355	0,479	1,15	1,65	8,43	15,3
	S	[kg mm ²]	_	_	-	-	_	_	0,791	1,07	6,01	10,3
J _H pro 100 mm Hub		[kg mm ² /100mm]	0,048		0,099		0,314		0,766		3,877	
J _L pro kg Nutzlast		[kg mm ² /kg]	0,03	0,10	0,03	0,91	0,10	0,91	0,91	2,53	2,53	10,13
J _W pro Zusatz-		[kg mm ²]	0,001	0,004	0,002	0,058	0,016	0,14	0,28	0,79	2,31	9,22
schlitten	S	[kg mm ²]	_	_	_	-	_	-	0,16	0,43	1,44	5,78

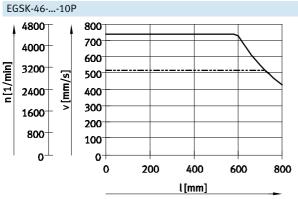

¹⁾ Variantencode → 8


Das Massenträgheitsmoment J_A der gesamten Achse wird wie folgt berech $J_A = J_O + J_W + J_H x$ Arbeitshub + $J_L x$ $m_{Nutzlast}$

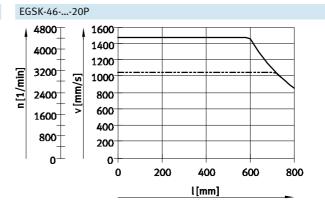
net:

FESTO


Datenblatt

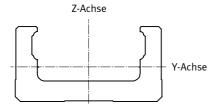

EGSK-33-...-6P-P

----- EGSK-33-...-6P, EGSK-33-...-6P-H


EGSK-33-...-10P-P

----- EGSK-33-...-10P, EGSK-33-...-10P-H

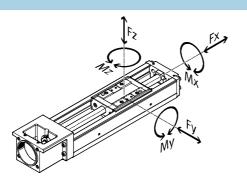
EGSK-46-...-10P-P


----- EGSK-46-...-10P, EGSK-46-...-10P-H

EGSK-46-...-20P-P

----- EGSK-46-...-20P, EGSK-46-...-20P-H

Flächenmomente 2. Grades



Baugröße	15	20	26	33	46
ly [mm	908	6 100	17 000	62 000	240 000
Iz [mm	14 200	62 000	150 000	380 000	1 500 000

Datenblatt

Belastungskennwerte

Die angegebenen Kräfte und Momente beziehen sich auf die Mittelachse der Spindel. Der Koordinaten-Nullpunkt ist der Schnittpunkt aus Führungsmitte und Längenmitte des Schlittens.

Baugröße				15 ³⁾	15 ³⁾		20		26		33		46	
Spindelsteigung				1	2	1	6	2	6	6	10	10	20	
	Code ²⁾													
Fy _{max.} , Fz _{max.}	−/H ⁴⁾	-	[N]	747	593	1 389	764	2 223	1 541	2 469	2 083	4 919	3 904	
	P ⁵⁾	-	[N]	1 185	941	2 204	1 213	3 528	2 446	3 920	3 306	7 809	6 198	
	$-/H^{4)}$	S	[N]	-	-	-	-	-	-	1 043	880	2 514	1 995	
	P5)	S	[N]	-	-	-	-	-	-	1 656	1 396	3 990	3 167	
Mx _{max} .	−/H ⁴⁾	-	[Nm]	8,2	6,5	18,1	9,9	37,8	26,2	50,1	42,2	145	115	
	P ⁵⁾	-	[Nm]	13	10,3	28,7	15,8	60	41,6	79,5	67,1	231	183	
	-/H ⁴⁾	S	[Nm]	-	-	-	-	-	-	21,2	17,8	74,4	59	
	P5)	S	[Nm]	-	-	-	-	-	-	33,6	28,3	118	93,7	
My _{max.} , Mz _{max.}	-/H ⁴⁾	-	[Nm]	2,3	1,9	5,8	3,2	12,9	8,9	16,4	13,8	48,7	38,7	
	P ⁵⁾	-	[Nm]	3,7	2,9	9,2	5,1	20,4	14,1	26	21,9	77,3	61,4	
	-/H ⁴⁾	S	[Nm]	-	-	-	-	-	-	3,8	3,2	13,6	10,8	
	P ⁵⁾	S	[Nm]	-	_	-	-	-	-	6	5	21,6	17,1	

- Berechnet mit einem Geschwindigkeit-Lastfaktor $f_W = 1,2$

- Variantencode → 8
 Baugröße 15 gibt es nur mit den Genauigkeitsklassen H und P
 Belastungen basieren auf Lebensdauervorgabe 5 x 10⁸ Umdrehungen und Lastfaktor f_w=1,2
 Belastungen basieren auf Lebensdauervorgabe 1,25 x 10⁸ Umdrehungen und Lastfaktor f_w=1,2

Tragzahlen												
Baugröße			15 ²⁾	15 ²⁾		20		26		33		
Spindelsteigung	pindelsteigung			2	1	6	2	6	6	10	10	20
	Code ¹⁾											
Kugelgewindetrieb												
Statisch c _o ,KGT	–/H	[N]	660	410	1 170	1 450	4 020	3 510	4 900	2 840	6 760	7 150
	Р	[N]	660	410	1 170	1 600	4 020	3 900	2 740	1 570	3 720	5 290
Dynamisch c _{dyn} ,KGT	–/H ³⁾	[N]	340	230	660	860	2 350	1 950	2 840	1 760	3 140	3 040
	P3)	[N]	340	230	660	1 060	2 350	2 390	2 250	1 370	2 940	3 430
Festlager												
Statisch $c_{o,bearing}$ [N]			290	290		1 240		1 760		2 590		
Dynamisch c _{dyn} , bearing ³⁾ [N]			590	590		1 000		1 380		1 790		

- 1) Variantencode → 8
- Baugröße 15 gibt es nur mit den Genauigkeitsklassen H und P
- 3) Dynamische Tragzahlen beziehen sich auf eine Basislebensdauer von $10^6\,\mathrm{Umdrehungen}$

FESTO

Datenblatt

Tragzahlen												
Baugröße			15 ²⁾	15 ²⁾		20		26		33		
Spindelsteigung Code ¹⁾			1	2	1	6	2	6	6	10	10	20
Linearführung												
Statisch c _o ,guide			3 450		6 300		12 150	12 150		20 200		
	S	[N]	_	_		-		-		10 000		
Dynamisch c _{dyn} ,g _{uide} ³⁾	_	[N]	1 532		2 849		5 746		9 207		21 747	
	S	[N]	-		_		-		3 889		11 112	
Momenten-Äquivalenzfaktore	n				•		•		•			
k _x	-	[1/m]	90,9		76,9		58,8		49,3		33,8	
	S	[1/m]	_		-		-		49,3		33,8	
k _y , k _z	_	[1/m]	319,9		238,7		172,9		151		101	
	S	[1/m]	-		-		-		277,1		185	

- 1) Variantencode → 8
- 2) Baugröße 15 gibt es nur mit den Genauigkeitsklassen H und P
- 3) Dynamische Tragzahlen beziehen sich auf eine Basislebensdauer von 100 km

Geschwindigkeitsabhängiger Lastfaktor fw

 $fw = 1,0 ... 1,2 (v \le 0,25 \text{ m/s})$

 $fw = 1,2 ... 1,5 (0,25 \text{ m/s} \le v \le 1,0 \text{ m/s})$

 $fw = 1,5 ... 2,0 (1,0 \text{ m/s} \le v \le 2,0 \text{ m/s})$

 $fw = 2,0 ... 3,5 (v \ge 2,0 m/s)$

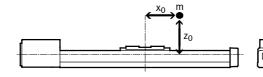
Berechnung der maximalen Vorschubkraft F_x

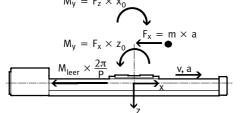
$$F_{x,max} = \frac{1}{f_w} \times \frac{Min[C_{dyn,KGT}; C_{dyn,bearing}]}{\sqrt[3]{\frac{L_{ref,rot}}{10^6}}}$$

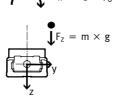
Berechnung der maximalen Kräfte $F_{y/z}$, und Momente $M_{x/y/z}$

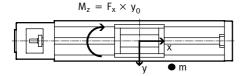
$$F_{y/z,max} = \frac{1}{f_w} \times \frac{C_{dyn,guide}}{\sqrt[3]{\frac{L_{ref,km}}{100km}}}$$

$$\mathsf{M}_{\mathsf{x/y/z,max}} = \frac{1}{\mathsf{k}_{\mathsf{x/y/z}}} \times \frac{1}{\mathsf{f_w}} \times \frac{\mathsf{C}_{\mathsf{dyn,guide}}}{\sqrt[3]{\frac{\mathsf{L}_{\mathsf{ref,km}}}{100\mathsf{km}}}}$$

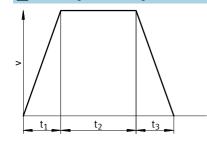

FESTO


Datenblatt


Berechnung der Lebensdauer													
Baugröße					20		26		33		46		
pindelsteigung P			1	2	1	6	2	6	6	10	10	20	
	Code ¹⁾												
Referenz-Lebensdauer	-/H		5 x 10 ⁸	5 x 10 ⁸									
in Umdrehungen, L _{ref,rot} P		1,25 x 10)8										
Referenz-Lebensdauer	-/H	[km]	500	1 000	500	3 000	1 000	3 000	3 000	5 000	5 000	10 000	
in Kilometer, L _{ref,km}	Р	[km]	125	250	125	750	250	750	750	1 250	1 250	2 500	


1) Variantencode → 8

1 Darstellung der Belastungen



2 Ermittlung der Belastungen über den Verfahrzyklus

,		
$q_1 = \frac{t_1}{t_{ges}}$	$q_2 = \frac{t_2}{t_ges}$	$q_3 = \frac{t_3}{t_{ges}}$
$t_{ges} = t_1 + t$	$t_2 + t_3$	

V	Geschwindigkeit
t_1	Beschleunigungszeit
t_2	Konstantfahrt-Zeit
t_3	Verzögerungszeit
q 1/2/3	rel. Zeitanteil der
	Zyklusphasen
t_{ges}	Zykluszeit

Kugelgewindetrieb

 $\begin{aligned} & \text{Für } t_1 \text{:} & \quad F_{x1} = - (\text{m} \times \text{a}) - (\text{M}_{leer} \times \frac{2\pi}{P}) \\ & \text{Für } t_2 \text{:} & \quad F_{x2} = - (\text{M}_{leer} \times \frac{2\pi}{P}) \end{aligned}$

Für t₃: $F_{x3} = m \times a - (M_{leer} \times \frac{2\pi}{P})$

 $F_{x,dyn} = \sqrt[3]{q_1 \times |F_{x1}|^3 + q_2 \times |F_{x2}|^3 + q_3 \times |F_{x3}|^3}$

lastung pro Zyklusphase

F_{X,dyn} berechnete mittlere
Kraftbelastung

m Nutzlast (Massenschwerpunkt)

a Beschleunigung

M_{leer} Leerlaufdreh-

 $F_{x1/2/3}$

berechnete Kraftbe-

M_{leer} Leerlaufdrehmoment → 9 P Spindelsteigung

→ 9

 $\begin{array}{ll} q_{1/2/3} & \quad \text{rel. Zeitanteil der} \\ & \quad \text{Zyklusphasen} \end{array}$

FESTO

berechnete Kraftbe-

lastung pro Zyklus-

berechnete Momen-

berechnete mittlere

berechnete mittlere Momentenbelastung

Nutzlast (Massen-

schwerpunkt) Fallbeschleunigung

Beschleunigung Schwerpunkt-Ab-

punkt

stände der Nutzlast

zum Schlitten-Mittel-

rel. Zeitanteil der

Zyklusphasen

Kraftbelastung

tenbelastung pro Zyklusphase

phase

 $F_{y1/2/3}$

 $F_{z1/2/3}$

 $M_{x1/2/3}$

 $M_{y1/2/3}$ $M_{z1/2/3}$

 $F_{v/z,dyn}$

 $M_{x/y/z,dyn}$

 x_0, y_0, z_0

q_{1/2/3}

m

g

Datenblatt

2 Ermittlung der Belastungen über den Verfahrzyklus Linearführung

Für $t_1: a \rightarrow , v \rightarrow$ $F_{v1} = 0$ $F_{z1} = m \times g$

$$M_{x1} = F_z \times y_0 = m \times g \times y_0$$

$$M_{y1} = -F_z \times x_0 + F_x \times z_0 = -m \times g \times x_0 + m \times a \times z_0$$

$$M_{z1} = F_x \times y_0 = m \times a \times y_0$$

Für
$$t_2$$
: $a = 0$, $v \rightarrow$

$$F_{y2} = 0$$

 $F_{z2} = m \times g$

$$\begin{aligned} \mathbf{M}_{x2} &= \mathbf{F}_{z} \times \mathbf{y}_{0} = \mathbf{m} \times \mathbf{g} \times \mathbf{y}_{0} \\ \mathbf{M}_{y2} &= -\mathbf{F}_{z} \times \mathbf{x}_{0} = -\mathbf{m} \times \mathbf{g} \times \mathbf{x}_{0} \end{aligned}$$

$$M_{72} = 0$$

Für t_3 : $a \leftarrow , v \rightarrow$

$$F_{y3} = 0$$
$$F_{z3} = m \times g$$

$$M_{x3} = F_z \times y_0 = m \times g \times y_0$$

$$M_{y3} = -F_z \times x_0 - F_x \times z_0 = -m \times g \times x_0 - m \times a \times z_0$$

$$M_{z3} = -F_x \times y_0 = -m \times a \times y_0$$

$$F_{y,dyn} = \sqrt[3]{q_1 \times |F_{y1}|^3 + q_2 \times |F_{y2}|^3 + q_3 \times |F_{y3}|^3}$$

$$F_{z,dyn} = \sqrt[3]{q_1 \times |F_{z1}|^3 + q_2 \times |F_{z2}|^3 + q_3 \times |F_{z3}|^3}$$

$$M_{x,dyn} = \sqrt[3]{q_1 \times |M_{x1}|^3 + q_2 \times |M_{x2}|^3 + q_3 \times |M_{x3}|^3}$$

$$M_{v,dvn} = \sqrt[3]{q_1 \times |M_{v1}|^3 + q_2 \times |M_{v2}|^3 + q_3 \times |M_{v3}|^3}$$

$$M_{z,dyn} = \sqrt[3]{q_1 \times |M_{z1}|^3 + q_2 \times |M_{z2}|^3 + q_3 \times |M_{z3}|^3}$$

3 Summenbelastung

Kugelgewindetrieb

$$\frac{|F_{x,dyn}|}{F_{x,max}} \leq \, f_v$$

berechnete mittlere $F_{x,dyn}$ Kraftbelastung

F _{x,max}	max. zulässige Kraft-
	belastung 🗲 9
f_v	Belastungs-Ver-
	gleichsfaktor 🗲 16

Linearführung

$$\frac{|F_{y,dyn}|}{F_{y,max}} + \frac{|F_{z,dyn}|}{F_{z,max}} + \frac{|M_{x,dyn}|}{M_{x,max}} + \frac{|M_{y,dyn}|}{M_{y,max}} + \frac{|M_{z,dyn}|}{M_{z,max}} \leq f_v \\ \\ F_{y/z,dyn} \\ F_{y/z,max} \\ F_{y/z$$

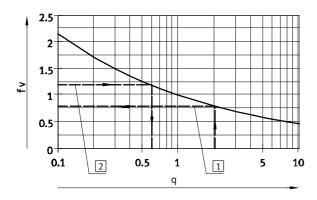
→ 12

Belastungs-Ver f_v gleichsfaktor → 16

FESTO

Datenblatt

4 Ermittlung des Belastungs-Vergleichsfaktors f


 $mit \qquad q = \frac{L_{calc,km}}{L_{ref,km}} = \frac{L_{calc,rot}}{L_{ref,rot}}$

für q = 1:

Berechnete Lebensdauer (hier Wunsch-Lebensdauer) $L_{calc,km} = 1 x Referenz$ -Lebensdauer $L_{ref,km}$ ergibt sich $f_v = 1$

für q ≠ 1:

Berechnete Lebensdauer (hier Wunsch-Lebensdauer) $L_{calc,km} = q \times Referenz$ -Lebensdauer $L_{ref,km}$ f_v ablesen (→ Diagramm) oder berechnen

Beispiel 1
 Beispiel 1

2 → Beispiel 2

f_V	Belastungs-Ver-
	gleichsfaktor
q	Quotient aus
	Wunsch-Lebens-
	dauer zu Referenz-
	Lebensdauer
L _{calc, km}	berechnete Lebens
	dauer in km

dauer in km -> 14 Lcalc, rot berechnete Lebens-

L_{ref, km}

dauer in Umdrehun-

Referenz-Lebens-

Referenz-Lebens-L_{ref. rot} dauer in Umdrehungen → 14

5 Berechnungsbeispiele

Beispiel 1:

EGSK-26-...-2P-H-...

 $L_{ref,km} = 1 000 \text{ km}$ $L_{calc,km} = 2 000 \text{ km}$

 $q = \frac{2000 \text{km}}{1000 \text{km}} = 2,0$

 $f_v = \frac{1}{\sqrt[3]{q}} = 0,79$

Ergebnis:

Eine Wunsch-Lebensdauer von 200% der Referenz-Lebensdauer bedeutet, dass die zulässige Summenbelastung um 21% niedriger sein muss.

Beispiel 2:

Ergibt sich aus der Berechnung der Summenbelastung ein Belastungs-Vergleichsfaktor $f_v = 1,2$, so beträgt die rechnerische Lebensdauer nur noch ca. 60% $(x = 0.6 \rightarrow Diagramm) der Refe$ renz-Lebensdauer.

$$q = \frac{1}{f_v^3} = 0,58$$

6 Statische Dimensionierung

Kugelgewindetrieb

 $F_{x,stat} = Max[F_{x1}, F_{x2}, F_{x3}] \le \frac{c_{o,KGT}}{f_c}$

 $F_{x,stat}$ Maximalwert der berechneten Kraftbelastung pro Zyklusphase

berechnete Kraftbe- $F_{x1/2/3}$ lastung pro Zyklusphase

Co.KGT statische Tragzahl Kugelgewindetrieb

→ 12 Sicherheitsfaktor gegen stat. Überlastung $f_s = 1,0 ... 3,0$

berechnete Momen-

tenbelastung pro

statische Tragzahl

Kugelgewindetrieb

Zyklusphase

Linearführung

 $\mathsf{F}_{\mathsf{y},\mathsf{stat}} = \mathsf{Max}[\mathsf{F}_{\mathsf{y}1},\mathsf{F}_{\mathsf{y}2},\mathsf{F}_{\mathsf{y}3}] \leq \frac{\mathsf{c}_{\mathsf{o},\mathsf{guide}}}{\mathsf{f}_{\mathsf{S}}}$ $F_{z,stat} = Max[F_{z1}, F_{z2}, F_{z3}] \le \frac{C_{o,guide}}{f_s}$

 $M_{x,stat} = Max[M_{x1}, M_{x2}, M_{x3}] \le \frac{1}{k_x} \times \frac{c_{o,guide}}{f_c}$

 $M_{y,stat} = Max[M_{y1}, M_{y2}, M_{y3}] \le \frac{1}{k_v} \times \frac{c_{o,guide}}{f_s}$

 $M_{z,stat} = Max[M_{z1}, M_{z2}, M_{z3}] \le \frac{1}{k_z} \times \frac{C_{o,guide}}{f_c}$

 $F_{y/z,stat}$

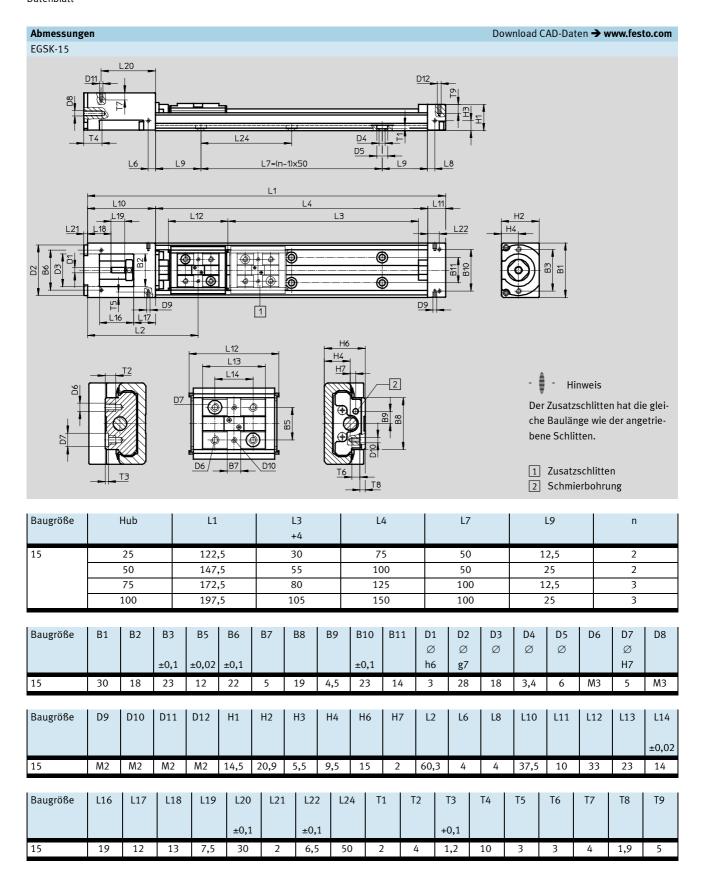
Maximalwert der berechneten Kraftbelastung pro Zyklusphase

Maximalwert der $M_{x/y/z,stat}$ berechneten Momentenbelastung

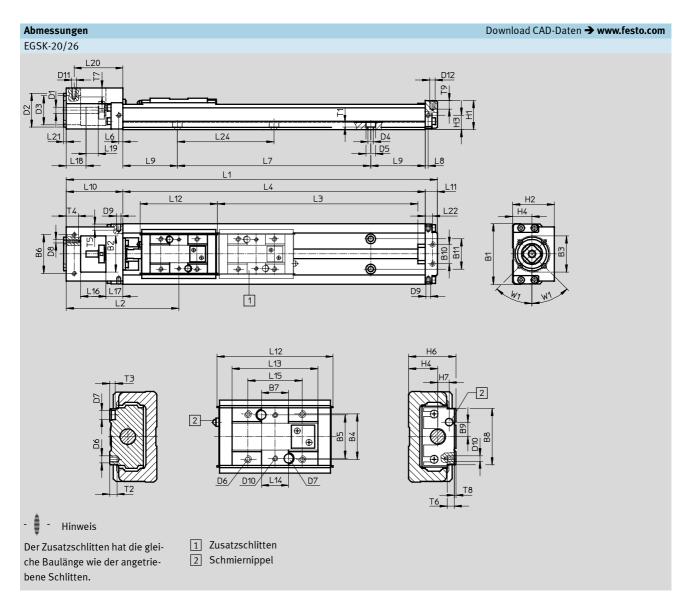
 $F_{y1/2/3}$ $F_{z1/2/3}$

pro Zyklusphase berechnete Kraftbelastung pro Zyklusphase

Co,guide


 $M_{x1/2/3}$

 $M_{y1/2/3}$

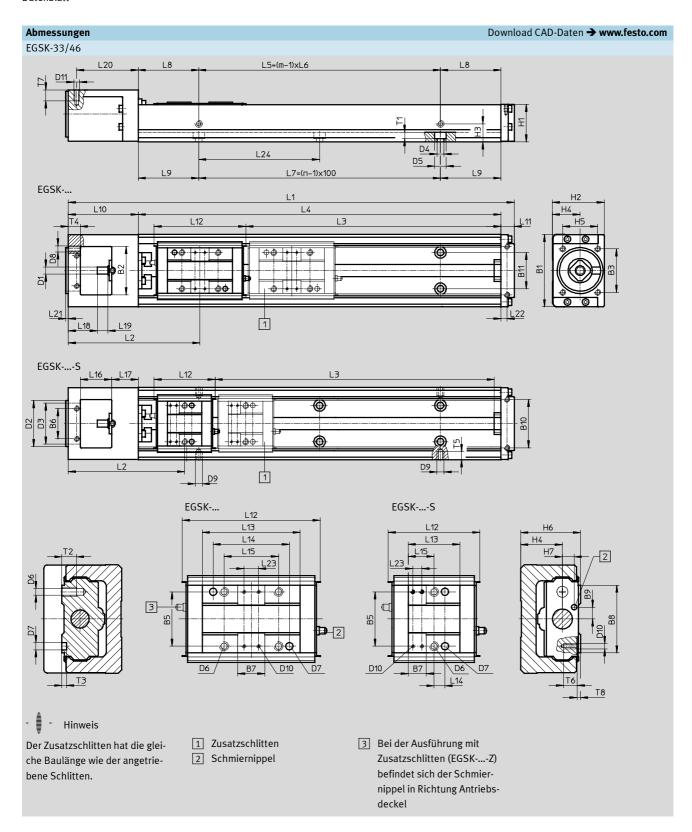

 $M_{z1/2/3}$

→ 13 Momenten-Äquiva $k_{x/y/z}$ lenzfaktoren → 13 Sicherheitsfaktor f_s gegen stat. Überlastung $f_s = 1,0 ... 3,0$

FESTO

FESTO

Baugröße	Hub	L1	L3	L4	L7=	L9	n
			+4		(n-1)x60		
20	25	152	40	100	60	20	2
	75	202	90	150	120	15	3
	125	252	140	200	120	40	3


Baugröße	Hub	L1	L3 +4	L4	L7= (n-1)x80	L9	n
26	50	207	67	150	80	35	2
	100	257	117	200	160	20	3
	150	307	167	250	160	45	3
	200	357	217	300	240	30	4

FESTO

Baugröße	B1	B2	B3 ∅	B4	B5	В6	B7	B8	В9	B10	B11	D1 Ø	D2 Ø	D3 Ø
					±0,02	±0,1				±0,1		h7	g7	
20	40	22	30	18	18	29	10	23	5	18	18	4	28	22
26	50	30	30	25	24	32	15	31	8	16	25	5	28	24
Baugröße	D4	D5	D6	D7	D8	D9	D10	D11	D12	H1	H2	Н3	H4	Н6
	Ø	Ø		Ø										
				H7										
20	3,4	6,5	M3	2	M3	M2,6	M2	M2,5	M2,5	19	28	10	13	20
26	4,5	8	M4	5	M3	M2,6	M3	M2,5	M3	24	34,5	12	16	26
Baugröße	H7	L2	L6	L8	L10	L11	L12	L13	L14 ¹⁾	L15	L16	L17	L18	L19
									±0,02					
20	3,4	72,5	3,5	2,5	42	10	46	33,2	10	20	18	12	16	8
26	6	91	3,5	2,5	47	10	64	47,4	15	30	21	14	16,5	10
Baugröße	L20	L21	L22	L24	T1	T2	T3	T4	T5	T6	T7	T8	T9	W1
	±0,1		±0,1											
20	34,5	2	6,5	60	3	4,5	3	10	4	5	5	0,9	5	45°
26	40,5	2	6	80	4	6,5	3	10	4	6	5	0,9	6	45°

¹⁾ Abstand der Passbohrung

FESTO

FESTO

Baugröße	Hub	L	1		.3 -4		L4		L5		L6	L7		L8	m	1	n
					S												
33	100	26	59	110	135		200		100	:	100	100		50	2	2	2
	200	36	59	210	235		300		200 200		200			50	2	2	3
	300	46	59	310	335		400		200	1	200	300		100	2	2	4
	400	56	59	410	435		500		400	2	200	400		50	3	3	5
	500	66	59	510	535		600		400	2	200	500		100	3	3	6
	600	76	69	610	635		700		600	4	200	600		50	4	ļ	7
Baugröße	Hub	L	1	L	.3		L4		L5		L6	L7		L8	n	า	n
				+	-4												
					S												
46	200	42		206	244		340		200		200	200		70	2		3
	300	52		306	344		440		400		200	300		20	3	3	4
	400	62		406	444		540		400		200	400		70	3	3	5
	500	72		506	544		640		600	_	200	500		20	4		6
	600	82		606	644		740		600		200	600		70	4		7
	800	1 02	25,5	806	844		940		800	2	200	800		70	5		9
l =								_								1	1 1
Baugröße	B1	B2	В3	B5	В6	В7	В	8	В9	B10) B1			D2	D3	D4	D5
			.0.1	.0.04	.0.1					. 0. 1		Q		Ø	Ø	Ø	Ø
	4.5		±0,1	±0,04	±0,1					±0,1		h7		g7			
33	60	40	36	30	25	15		7,4	6,5	40	30			38	34	5,5	9,5
46	86	48	36	46	42	15	54	1,4	10	58	46	5 8		38	34	6,6	11
Paugröß o	D6	D7	D8	D9	D10	D11	l u	11	H2	Н3	H	H!		Н6	H7	l 1	.2
Baugröße	рб	Ø	Do	D9	D10	ווט	"	11	ПZ	ПЭ	П	+ n:	·	по	П/	L	.2 S
		₩ H7										±0,	1				3
33	M5	4	M5	M2,6	M2	M3	3	1	43	15	23			33	6,5	105	92,3
46	M6	5	M5	M2,6	M2	M4	43		60	28	32			46	9	142,5	123,8
40	mo	,	1115	1112,0	1112	111-1	7.2	,,,	00	20	, ,,,			40	,	172,5	125,0
Baugröße	L9	L10	L11	L1	2		L13		L1	4		L15		L16	L17	L18	L19
2445.030		210			S			S		S		S					
									±0,04	±0,1	1						
33	50	58	11	76	50,5	54	28	3,5	42	6	30	14,	25	26	22	24	9
46	70	72,5	13	110	72,5	81	43	3,5	28	11	46	21,	75 3	33,5	25	21,5	18
							•	•			•	•	•		•	•	
Baugröße	L20	L21	L22		L23	L	24	T1	T	2	T3	T4	T:	5	T6	T7	T8
					S												
	±0,1		±0,1														
33 46	±0,1 51 65,5	2 2	±0,1 5 3,5	8	5 8	_1	00	5,4	. 8	3	2,5 2,5	10	4	'	5	6	1

FESTO

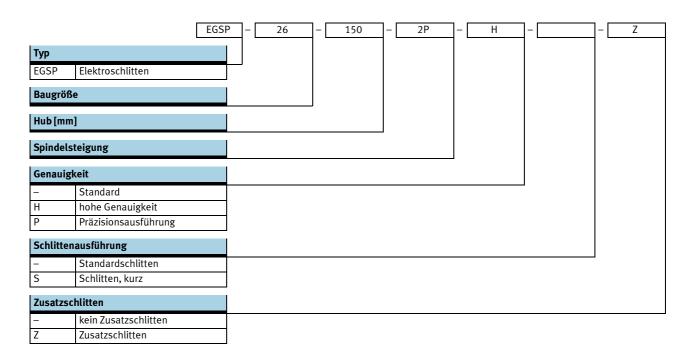
Datenblat^{*}

Bestellanga	aben – Elektr	oschlitten mit Standardschlitten	
Baugröße	Hub	Teile-Nr. Typ	Teile-Nr. Typ
	[mm]		
		Spindelsteigung 1 mm	Spindelsteigung 6 mm
20	25	562758 EGSK-20-25-1P	562761 EGSK-20-25-6P
	75	562759 EGSK-20-75-1P	562762 EGSK-20-75-6P
	125	562760 EGSK-20-125-1P	562763 EGSK-20-125-6P
Baugröße	Hub	Teile-Nr. Typ	Teile-Nr. Typ
	[mm]		
		Spindelsteigung 2 mm	Spindelsteigung 6 mm
26	50	562764 EGSK-26-50-2P	562768 EGSK-26-50-6P
	100	562765 EGSK-26-100-2P	562769 EGSK-26-100-6P
	150	562766 EGSK-26-150-2P	562770 EGSK-26-150-6P
	200	562767 EGSK-26-200-2P	562771 EGSK-26-200-6P
Baugröße	Hub	Teile-Nr. Typ	Teile-Nr. Typ
	[mm]		
		Spindelsteigung 6 mm	Spindelsteigung 10 mm
33	100	562772 EGSK-33-100-6P	562778 EGSK-33-100-10P
	200	562773 EGSK-33-200-6P	562779 EGSK-33-200-10P
	300	562774 EGSK-33-300-6P	562780 EGSK-33-300-10P
	400	562775 EGSK-33-400-6P	562781 EGSK-33-400-10P
	500	562776 EGSK-33-500-6P	562782 EGSK-33-500-10P
	600	562777 EGSK-33-600-6P	562783 EGSK-33-600-10P
Baugröße	Hub	Teile-Nr. Typ	Teile-Nr. Typ
	[mm]		
		Spindelsteigung 10 mm	Spindelsteigung 20 mm
46	200	562784 EGSK-46-200-10P	562790 EGSK-46-200-20P
	300	562785 EGSK-46-300-10P	562791 EGSK-46-300-20P
	400	562786 EGSK-46-400-10P	562792 EGSK-46-400-20P
	500	562787 EGSK-46-500-10P	562793 EGSK-46-500-20P
	600	562788 EGSK-46-600-10P	562794 EGSK-46-600-20P
	800	562789 EGSK-46-800-10P	562795 EGSK-46-800-20P

FESTO

Bestellangaben – Produktbaukasten

Be	stelltabelle									
Ва	ugröße		15	20	26	33	46	Bedin- gungen	Code	Eintrag Code
M	Baukasten-Nr.		562749	562750	562751	562752	562753	0 0		
_	Antriebsfunktion			Schlittenantriel					EGSK	EGSK
	Baugröße		15	20	26	33	46			
		[mm]			-				-25	
	für Standardschlitten		50	_	50	-			-50	
			75		-				-75	
			100	-	100		-		-100	
			-	125	-		•		-125	
			-		150	-			-150	
			_		200				-200	
			-			300			-300	
			-			400			-400	
			-			500			-500	
			-			600			-600	
			-				800		-800	
		[mm]	-			130	-		-130	
	für Schlitten, kurz		-			230	-		-230	
			-				240		-240	
			_			330	-		-330	
			-				340		-340	
			-			430	-		-430	
			_			1520	440		-440	
			_			530	-		-530	
			_			(20	540		-540	
			_			630	-		-630	
			_				640 840		-640 -840	
	Spindelsteigung	[mm]	1				840		-640 -1P	
	Spiride (Steigung	[]	2	-	2				-1P -2P	
			_	6	2		_		-2P	
			_		I -	10			-10P	
			_			10	20		-20P	
0	Genauigkeit		_	Standardge	naujokojt					
ت	Genadiskeit		Höhere Gen		Hadiskeit				 -H	
			Präzisionsge					1	-P	
	Schlittenausführung		Standardsch							
	mitteriadarum ung		-		urz		- S			
	Zusatzschlitten		Kein Zusatzs	schlitten		Schlitten, k				
				ten (Zusatzschli	2	- Z				
				alls einen kurze						


Bei Baugröße 33 nicht in Verbindung mit Hub für Standardschlitten 600 und Hub für Schlitten, kurz 630
Bei Baugröße 46 nicht in Verbindung mit Hub für Standardschlitten 800 und Hub für Schlitten, kurz 840

2	Z	Bei Baugröße 15 nicht in Verbindung mit Hub für Standardschlitten 25 und Hub für Standardschlitten 50
		Bei Baugröße 20 nicht in Verbindung mit Hub für Standardschlitten 25
		Bei Baugröße 26 nicht in Verbindung mit Hub für Standardschlitten 50
		Bei Baugröße 33 nicht in Verbindung mit Hub für Standardschlitten 100

Übertrag Bestellcode															
	EGSK	-		-	-	- [-		-		-		-	

FESTO

Typenschlüssel

FESTO

Datenblatt

Funktion

Hublänge 25 ... 840 mm

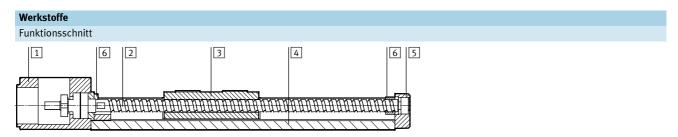
Allgemeine Technische Dater	n														
Baugröße			20		26		33			46					
Spindelsteigung			1	6	2	6	6	10	20	10	20				
	Code ¹⁾														
Konstruktiver Aufbau			Elektrome	echanische	Linearach	se mit Kuge	elumlaufspi	indel							
Führung			Kugelumlaufführung												
Einbaulage	<u> </u>					beliebig									
Befestigungsart der Nutzlast		Innengew	inde												
		Passstift													
Arbeitshub ²⁾	[mm]	25 125		50 200		100 600			200 800						
	S	[mm]	-		-		130 63	0		240 84	0				
Max. Vorschubkraft	-/H ³⁾	[N]	69	72	168	164	370	227	165	365	267				
F _{x,max}	P ⁴⁾	[N]	87	112	212	212	466	286	208	460	337				
Max. Antriebsdrehmoment	$-/H^{3)}$	[Ncm]	1,1	6,9	5,3	16	35	36	53	58	85				
M _{Antr,max}	P ⁴⁾	[Ncm]	1,4	11	6,7	20	45	46	66	73	107				
Leerlaufdrehmoment	-/H	[Ncm]	0,5	0,5	1,5	1,5	7	7	7	10	10				
M _{leer}	Р	[Ncm]	1,2	1,2	4,0	4,0	15	15	15	17	17				
Max. Drehzahl ⁵⁾		[1/min]	6 000	6 000	6 000	6 000	6 000	6 000	6 000	6 000	6 000				
Max. Geschwindigkeit ⁵⁾	-/H	[m/s]	0,1	0,6	0,2	0,6	0,6	1	2	1	2				
	Р	[m/s]	0,1	0,6	0,2	0,6	0,6	1	2	1	2				
Max. Beschleunigung		$[m/s^2]$	10		10		20			20					
Referenzierung	•	induktive	r Näherung	sschalter S	SIES-8M				•						

- Variantencode → 24
 Maximaler Verfahrweg → 33
 In Verbindung mit einem Zusatzschlitten reduziert sich der Arbeitshub um die Länge des Zusatzschlittens und den Abstand zwischen beiden Schlitten.
- 3) Belastungen basieren auf Lebensdauervorgabe 5 x 10⁸ Umdrehungen
- 4) Belastungen basieren auf Lebensdauervorgabe 2,5 x 10⁸ Umdrehungen
- 5) Reduzierte Geschwindigkeiten bei Baugrößen 33 und 46 mit langen Hüben → 27

Betriebs- und Umweltbedingung	en	
Umgebungstemperatur	[°C]	0 +40
Relative Luftfeuchtigkeit	[%]	0 95 (nicht kondensierend)

Gewichte [kg]					
Baugröße		20	26	33	46
	Code ¹⁾				
Grundgewicht bei	_	0,38	0,78	1,38	3,60
0 mm Hub ²⁾	S	-	-	1,30	3,30
Gewichtszuschlag	_	0,27	0,42	0,72	1,40
pro 100 mm Hub					
Bewegte Masse		0,07	0,15	0,31	0,91
	S	-	-	0,17	0,57
Zusatzschlitten Z	_	0,07	0,15	0,31	0,91
	S	-	-	0,17	0,57

¹⁾ Variantencode 🗲 24


²⁾ Inkl. Schlitten, ohne Zusatzschlitten

FESTO

Datenblatt

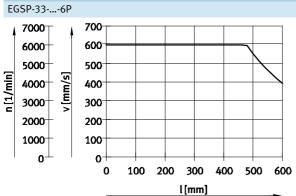
Genauigkeitsdaten [µm]						
Baugröße			20	26	33	46
	Hub	Code ¹⁾				
Wiederholgenauigkeit ²⁾		-	±10	±10	±10	±10
		Н	±5	±5	±5	±5
		P	±3	±3	±3	±3
Laufparallelität	25 340	Н	25	25	25	35
	400 540	Н	-	-	35	35
	600 640	Н	-	-	40	40
	800 840	Н	-	-	-	50
	25 340	Р	10	10	10	15
	400 540	Р	-	-	15	15
	600 640	Р	-	-	20	20
Max. Reversierspiel		_	20	20	20	20
		Н	10	10	20	20
		Р	3	3	3	3

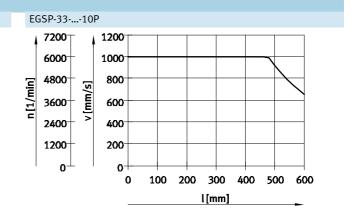
Variantencode → 24
 Die erzielbare Wieder Die erzielbare Wiederholgenauigkeit eines Motor-Achs-Systems wird auch von der Winkelauflösung des Motors und den gewählten Reglerparametern beeinflusst. Die angegebene Wiederholgenauigkeit kann daher nicht mit allen Motoren erreicht werden

Elektroschlitten	
1 Antriebsdeckel	Aluminium-Druckguss, beschichtet
2 Spindel	Stahl
3 Schlitten	Stahl
4 Profil	hochlegierter Stahl
5 Abschlussdeckel	Aluminium-Druckguss, beschichtet
6 Puffer	Ethylenvinylacetet-Copolymer
Werkstoff-Hinweis	RoHS-konform
	LABS-haltige Stoffe enthalten

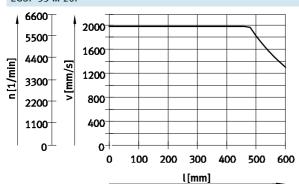
Massenträgheitsmo	ment										
Baugröße			20		26	26		33			
Spindelsteigung				6	2	6	6	10	20	10	20
	Code ¹⁾										
Jo		[kg mm ²]	0,087	0,143	0,355	0,479	2,72	3,22	5,57	8,51	15,42
	S	[kg mm ²]	_	_	-	_	1,93	2,21	_	6,10	10,43
J _H pro 100 mm Hub		[kg mm ² /100mm]	0,099		0,314	•	0,766	•	•	3,877	
J _L pro kg Nutzlast		[kg mm ² /kg]	0,03	0,91	0,10	0,91	0,91	2,53	10,13	2,53	10,13
J _W pro Zusatz-		[kg mm ²]	0,002	0,058	0,016	0,14	0,28	0,79	3,14	2,31	9,22
schlitten	S	[kg mm ²]	_	_	-	-	0,16	0,43	-	1,44	5,78

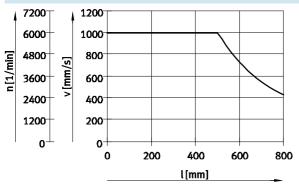
¹⁾ Variantencode → 24


Das Massenträgheitsmoment J_A der gesamten Achse wird wie folgt berech $J_A = J_O + J_W + J_H x$ Arbeitshub + $J_L x$ $m_{Nutzlast}$

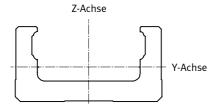

net:

FESTO


Datenblatt

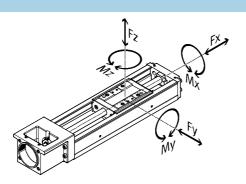


EGSP-33-...-20P



EGSP-46-...-20P

Flächenmomente 2. Grades



Baugröße	20	26	33	46
ly [mm ⁴]	6 000	16 600	53 500	205 000
Iz [mm ⁴]	61 400	148 000	352 000	1 450 000

Datenblatt

Belastungskennwerte

Die angegebenen Kräfte und Momente beziehen sich auf die Mittelachse der Spindel. Der Koordinaten-Nullpunkt ist der Schnittpunkt aus Führungsmitte und Längenmitte des Schlittens.

Baugröße				20		26	26		33			
Spindelsteigung				1	6	2	6	6	10	20	10	20
	Code ²⁾											
Fy _{max.} , Fz _{max.}	−/H ³⁾	-	[N]	2 325	1 279	3 991	2 767	3 619	3 052	2 422	7 092	5 629
	P ⁴⁾	-	[N]	2 929	1 612	5 028	3 486	4 559	3 845	3 052	8 935	7 092
	$-/H^{3)}$	S	[N]	-	-	-	-	2 405	2 029	-	5 099	4 047
	P ⁴⁾	S	[N]	-	-	-	-	3 031	2 5 5 6	-	6 424	5 099
Mx _{max} .	−/H ³⁾	-	[Nm]	28,8	15,9	64,7	44,8	71,7	60,4	48,0	205	163
	P ⁴⁾	-	[Nm]	36,3	20,0	81,5	56,5	90,3	76,1	60,4	258	205
	$-/H^{3)}$	S	[Nm]	-	-	-	-	47,6	40,2	-	147	117
	P ⁴⁾	S	[Nm]	-	-	-	-	60,0	50,6	-	186	147
My _{max.} , Mz _{max.}	−/H ³⁾	-	[Nm]	9,9	5,5	25,1	17,4	25,5	21,5	17,1	74,6	59,2
	P ⁴⁾	-	[Nm]	12,5	6,9	31,6	21,9	32,1	27,1	21,5	94,0	74,6
	$-/H^{3)}$	S	[Nm]	-	-	-	-	10,1	8,5	-	34,9	27,7
	P ⁴⁾	S	[Nm]	_	_	_	_	12,7	10,7	_	44,0	34,9

- Berechnet mit einem Geschwindigkeit-Lastfaktor $f_W = 1,2$

- 20 Variantencode → 24
 3) Belastungen basieren auf Lebensdauervorgabe 5 x 10⁸ Umdrehungen und Lastfaktor f_w=1,2
 4) Belastungen basieren auf Lebensdauervorgabe 2,5 x 10⁸ Umdrehungen und Lastfaktor f_w=1,2

Tragzahlen											
•			1		1		1			1	
Baugröße			20		26		33			46	
Spindelsteigung	delsteigung Code ¹⁾			6	2	6	6	10	20	10	20
	Code ¹⁾										
Kugelgewindetrieb											
Statisch c _o , _{KGT}	–/H	[N]	1 170	1 450	4 020	3 510	6 290	3 780	3 770	6 990	7 040
	Р	[N]	1 170	1 600	4 020	3 900	6 290	3 780	3 770	6 990	7 040
Dynamisch c _{dyn} ,KGT	-/H ²⁾	[N]	660	860	2 350	1 950	4 400	2 700	2 620	4 350	4 240
	P ²⁾	[N]	660	1 060	2 350	2 390	4 400	2 700	2 620	4 350	4 240
Festlager											
Statisch co,bearing		[N]	735		1 230		2 700			3 330	
Dynamisch c _{dyn} , bearing	2)	[N]	1 150		2 000		6 250			6 700	

- 1) Variantencode → 24
- 2) Dynamische Tragzahlen beziehen sich auf eine Basislebensdauer von 10⁶ Umdrehungen

FESTO

Datenblatt

Tragzahlen													
Baugröße	Baugröße					26		33		46			
Spindelsteigung		1	6	2	6	6	10	20	10	20			
Linearführung													
Statisch c _o ,guide		-	[N]	8 030		16 500		20 400		45 900			
	-	S	[N]	-		_		11 500		_	28 700		
Dynamisch c _{dyn} ,guide ²⁾		-	[N] 4 770			10 318		13 493			31 351		
	-	S	[N]	-		_		8 969		_	22 541		
Momenten-Äquivalenzfak	ctoren							•					
k _x		_	[1/m]	80,7		61,7		50,5			34,6		
	-	S	[1/m]	-		_		50,5		_	34,6		
k _y , k _z		- [1/m]				159,1		142			95,1		
	-	S	[1/m]	-		-		239,1		-	146,1		

¹⁾ Variantencode → 24

Geschwindigkeitsabhängiger Lastfaktor fw

 $fw = 1,0 ... 1,2 (v \le 0,25 \text{ m/s})$

 $fw = 1,2 ... 1,5 (0,25 \text{ m/s} \le v \le 1,0 \text{ m/s})$

 $fw = 1.5 ... 2.0 (1.0 \text{ m/s} \le v \le 2.0 \text{ m/s})$

 $fw = 2.0 ... 3.5 (v \ge 2.0 m/s)$

Berechnung der maximalen Vorschubkraft F_x

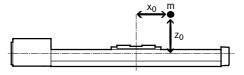
$$F_{x,max} = \frac{1}{f_W} \times \frac{Min[C_{dyn,KGT}; C_{dyn,bearing}]}{\sqrt[3]{\frac{L_{ref,rot}}{10^6}}}$$

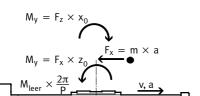
Berechnung der maximalen Kräfte $F_{y/z}$, und Momente $M_{x/y/z}$

$$F_{y/z,max} = \frac{1}{f_w} \times \frac{C_{dyn,guide}}{\sqrt[3]{\frac{L_{ref,km}}{100km}}}$$

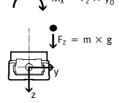
$$M_{x/y/z,max} = \frac{1}{k_{x/y/z}} \times \frac{1}{f_w} \times \frac{C_{dyn,guide}}{\sqrt[3]{\frac{L_{ref,km}}{100km}}}$$

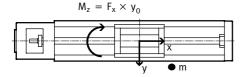
²⁾ Dynamische Tragzahlen beziehen sich auf eine Basislebensdauer von 100 km

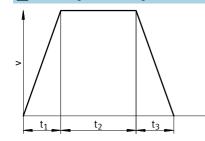

FESTO


Datenblatt

Berechnung der Lebensdauer	Berechnung der Lebensdauer														
Baugröße	20		26		33		46								
Spindelsteigung P	1	6	2	6	6	10	20	10	20						
	Code ¹⁾														
Referenz-Lebensdauer	-/H		5 x 10 ⁸												
in Umdrehungen, L _{ref,rot}	2,5 x 10 ⁸	2,5 x 10 ⁸													
Referenz-Lebensdauer	-/H	[km]	500	3 000	1 000	3 000	3 000	5 000	10 000	5 000	10 000				
in Kilometer, L _{ref,km}	[km]	250	1 500	500	1 500	1 500	2 500	5 000	2 500	5 000					


1) Variantencode → 24


1 Darstellung der Belastungen



2 Ermittlung der Belastungen über den Verfahrzyklus

$q_1 = \frac{t_1}{t_{ges}}$	$q_2 = \frac{t_2}{t_{ges}}$	$q_3 = \frac{t_3}{t_{ges}}$
$t_{ges} = t_1 + t_2$	+ t ₃	

V	Geschwindigkeit
t_1	Beschleunigungszeit
t_2	Konstantfahrt-Zeit
t_3	Verzögerungszeit
q _{1/2/3}	rel. Zeitanteil der
	Zyklusphasen
t _{ges}	Zykluszeit

Kugelgewindetrieb

 $\begin{aligned} & \text{Für } t_1 \text{:} & \quad F_{x1} = - (\text{m} \times \text{a}) - (\text{M}_{\text{leer}} \times \frac{2\pi}{P}) \\ & \text{Für } t_2 \text{:} & \quad F_{x2} = - (\text{M}_{\text{leer}} \times \frac{2\pi}{P}) \end{aligned}$

Für t₃: $F_{x3} = m \times a - (M_{leer} \times \frac{2\pi}{P})$

 $F_{x,dyn} = \sqrt[3]{q_1 \times |F_{x1}|^3 + q_2 \times |F_{x2}|^3 + q_3 \times |F_{x3}|^3}$

 $\begin{array}{c} F_{x1/2/3} & \quad \text{berechnete Kraftbe-} \\ \quad \text{lastung pro Zyklus-} \\ \quad \text{phase} \end{array}$

F_{x,dyn} berechnete mittlere Kraftbelastung m Nutzlast (Massenschwerpunkt) a Beschleunigung

a Beschleunigung
M_{leer} Leerlaufdrehmoment → 25
P Spindelsteigung

→ 25 rel. Zeitanteil der

q_{1/2/3} rel. Zeitanteil d Zyklusphasen

FESTO

berechnete Kraftbe-

lastung pro Zyklus-

berechnete Momen-

berechnete mittlere

berechnete mittlere Momentenbelastung

Nutzlast (Massen-

schwerpunkt)
Fallbeschleunigung

Beschleunigung Schwerpunkt-Ab-

punkt

stände der Nutzlast

zum Schlitten-Mittel-

rel. Zeitanteil der

Zyklusphasen

Kraftbelastung

tenbelastung pro Zyklusphase

phase

 $F_{y1/2/3}$

 $F_{z1/2/3}$

 $M_{x1/2/3}$

 $M_{y1/2/3}$, $M_{z1/2/3}$

 $F_{v/z,dyn}$

 $M_{x/y/z,dyn}$

 x_0, y_0, z_0

q_{1/2/3}

 $F_{x,max}$

m

g

Datenblatt

2 Ermittlung der Belastungen über den Verfahrzyklus Linearführung

Linearführung Für t_1 : $a \rightarrow v \rightarrow v \rightarrow v_1 = 0$

$$F_{z1} = m \times g$$

$$M_{x1} = F_z \times y_0 = m \times g \times y_0$$

$$\mathsf{M}_{\mathsf{y}1} = \, -\, \mathsf{F}_{\mathsf{z}} \times \mathsf{x}_{\mathsf{0}} + \, \mathsf{F}_{\mathsf{x}} \times \mathsf{z}_{\mathsf{0}} = \, -\, \mathsf{m} \times \mathsf{g} \times \mathsf{x}_{\mathsf{0}} + \, \mathsf{m} \times \mathsf{a} \times \mathsf{z}_{\mathsf{0}}$$

$$M_{z1} = F_x \times y_0 = m \times a \times y_0$$

Für
$$t_2$$
: $a = 0$, $v \rightarrow$

$$F_{v2} = 0$$

$$F_{72} = m \times g$$

$$M_{x2} = F_z \times y_0 = m \times g \times y_0$$

$$M_{v2} = -F_z \times X_0 = -m \times g \times X_0$$

$$M_{72} = 0$$

Für t_3 : $a \leftarrow$, $v \rightarrow$

$$F_{v3} = 0$$

$$F_{73} = m \times g$$

$$M_{x3} = F_z \times y_0 = m \times g \times y_0$$

$$M_{v3} = -F_z \times x_0 - F_x \times z_0 = -m \times g \times x_0 - m \times a \times z_0$$

$$M_{z3} = -F_x \times y_0 = -m \times a \times y_0$$

$$F_{y,dyn} = \sqrt[3]{q_1 \times |F_{y1}|^3 + q_2 \times |F_{y2}|^3 + q_3 \times |F_{y3}|^3}$$

$$F_{z,dyn} = \sqrt[3]{q_1 \times |F_{z1}|^3 + q_2 \times |F_{z2}|^3 + q_3 \times |F_{z3}|^3}$$

$$M_{x,dyn} = \sqrt[3]{q_1 \times |M_{x1}|^3 + q_2 \times |M_{x2}|^3 + q_3 \times |M_{x3}|^3}$$

$$\rm M_{y,dyn} = \sqrt[3]{q_1 \times |M_{y1}|^3 + q_2 \times |M_{y2}|^3 + q_3 \times |M_{y3}|^3}$$

$$M_{z,dyn} = \sqrt[3]{q_1 \times |M_{z1}|^3 + q_2 \times |M_{z2}|^3 + q_3 \times |M_{z3}|^3}$$

3 Summenbelastung

Kugelgewindetrieb

$$\frac{|F_{x,dyn}|}{F_{x,max}} \leq \, f_v$$

F _{x,dyn}	berechnete mittlere
	Kraftbelastung

Linearführung

$$\frac{|F_{y,dyn}|}{F_{y,max}} + \frac{|F_{z,dyn}|}{F_{z,max}} + \frac{|M_{x,dyn}|}{M_{x,max}} + \frac{|M_{y,dyn}|}{M_{y,max}} + \frac{|M_{z,dyn}|}{M_{z,max}} \leq f_v$$

$$\begin{array}{cc} F_{y/z,dyn} & & \text{berechnete mittlere} \\ & & \text{Kraftbelastung} \end{array}$$

$$F_{y/z,max}$$
 max. zulässige Kraft-

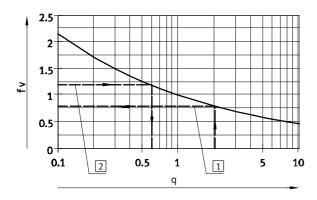
$$M_{x/y/z,dyn}$$
 berechnete mittlere Momentenbelastung

$$M_{x/y/z,max}$$
 max. zulässige Momentenbelastung

FESTO

Datenblatt

4 Ermittlung des Belastungs-Vergleichsfaktors f


f	_ 1_	mit	a _ L _{cal}	lc,km _	L _{calc,rot}
١٧	_ <u></u> 3⁄q	IIIIL	$q - \overline{L_{re}}$	ef.km	L _{ref.rot}

für q = 1:

Berechnete Lebensdauer (hier Wunsch-Lebensdauer) $L_{calc,km} = 1 \times Referenz$ -Lebensdauer $L_{ref,km}$ ergibt sich $f_v = 1$

für q ≠ 1:

Berechnete Lebensdauer (hier Wunsch-Lebensdauer) $L_{calc,km} = q \times Referenz$ -Lebensdauer $L_{ref,km}$ f_v ablesen (\rightarrow Diagramm) oder berechnen

Beispiel 1
 Beispiel 1
 ■ Beispiel 1

2 → Beispiel 2

f_V	Belastungs-Ver-
	gleichsfaktor
q	Quotient aus
	Wunsch-Lebens-
	dauer zu Referenz-
	Lebensdauer
L _{calc, km}	berechnete Lebens-
	dauer in km
L _{ref, km}	Referenz-Lebens-
	dauer in km 🗲 30

gen L_{ref, rot} Referenz-Lebens-

dauer in Umdrehungen → 30

berechnete Lebens-

dauer in Umdrehun-

5	Berechnungsbeispiele
Bei	spiel 1:

EGSP-26-...-2P-H-...

 $L_{ref,km} = 1 000 \text{ km}$ $L_{calc,km} = 2 000 \text{ km}$

 $q = \frac{2000 \text{km}}{1000 \text{km}} = 2,0$

 $f_v = \frac{1}{\sqrt[3]{q}} = 0,79$

Ergebnis:

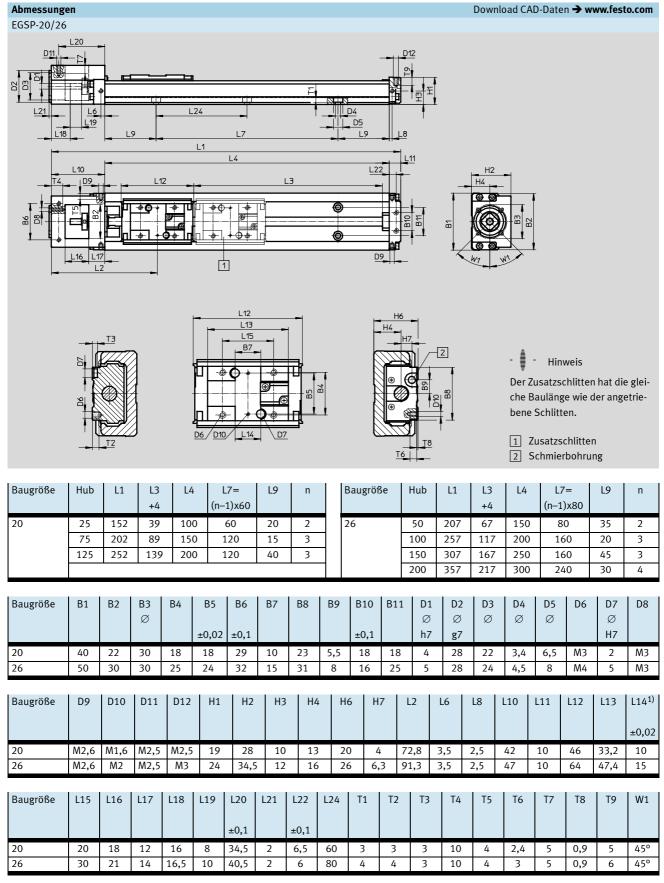
Eine Wunsch-Lebensdauer von 200% der Referenz-Lebensdauer bedeutet, dass die zulässige Summenbelastung um 21% niedriger sein muss. Beispiel 2:

Ergibt sich aus der Berechnung der Summenbelastung ein Belastungs-Vergleichsfaktor $f_V = 1,2$, so beträgt die rechnerische Lebensdauer nur noch ca. 60% ($x = 0,6 \Rightarrow$ Diagramm) der Referenz-Lebensdauer.

$$q = \frac{1}{f_v^3} = 0,58$$

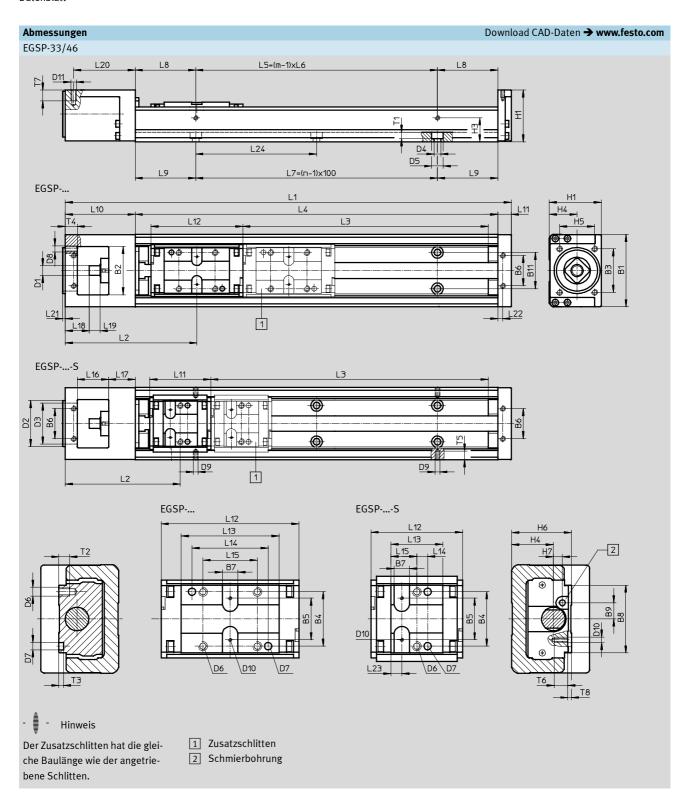
L_{calc, rot}

6 Statische Dimensionierung


Kugelgewindetrieb

$$F_{x,stat} = \text{Max}[F_{x1}, F_{x2}, F_{x3}] \leq \frac{c_{o, KGT}}{f_s} \\ F_{x,stat} = \text{Max}[F_{x1}, F_{x2}, F_{x3}] \leq \frac{c_{o, KGT}}{f_s} \\ F_{x,stat} = \text{Max}[F_{x1}, F_{x2}, F_{x3}] \leq \frac{c_{o, KGT}}{f_s} \\ F_{x,stat} = \text{Max}[F_{x1}, F_{x2}, F_{x3}] \leq \frac{c_{o, KGT}}{f_s} \\ \text{berechnete Kraft-} \\ \text{belastung pro} \\ \text{belastung pro} \\ \text{Zyklusphase} \\ F_{x1/2/3} \\ \text{berechnete Kraftbe-} \\ \text{lastung pro Zyklus-} \\ \text{stung } f_s = 1, 0 \dots 3, 0 \\ \text{phase} \\ \text{stung } f_s = 1, 0 \dots 3, 0 \\ \text{phase} \\ \text{stung for a proof of the proof$$

Linearführung


$$F_{y,stat} = \text{Max}[F_{y1}, F_{y2}, F_{y3}] \leq \frac{c_{o,guide}}{f_s} \qquad \qquad F_{y/z,stat} \qquad \text{Maximalwert der berechneten Kraft-berechneten Kraft-belastung pro} \\ F_{z,stat} = \text{Max}[F_{z1}, F_{z2}, F_{z3}] \leq \frac{c_{o,guide}}{f_s} \qquad \qquad belastung pro \\ Zyklusphase \qquad tenbelastung pro \\ Zyklusphase \qquad tenbelastung pro \\ Zyklusphase \qquad Zyklusphase \qquad Zyklusphase \qquad Zyklusphase \qquad Zyklusphase \qquad X_{xy/z,stat} \qquad Maximalwert der \qquad Zyklusphase \qquad Statische Tragzahl Kugelgewindetrieb \qquad Derechneten Momentenbelastung pro Zyklusphase \qquad Year Sulling pro Zyklusphase \qquad Year Sulling$$

FESTO

¹⁾ Abstand der Passbohrung

FESTO

FESTO

Baugröße	Hub	L	.1		L3 +4		L4	L5		L6		L7	L8		m	n
			-		S											
33	100	2	69	103	130		200	100		100)	100	50		2	2
	200	3	69	203	230		300	200	200 2)	200	50		2	3
	300	4	69	303	330		400	200		200		300	100		2	4
	400		69	403	430		500	400		200	0	400	50		3	5
	500		69	503	530		600	400		200		500	100		3	6
	600	7	69	603	630		700	600		200	0	600	50		4	7
1																
Baugröße	Hub	L	.1		L3		L4	L5		L6	1	L7	L8		m	n
			-		+4											
					S									_		
46	200		5,5	206	240		340	200		200		200	70		2	3
	300		5,5	306	340		440	400		200		300	20		3	4
	400		5,5	406	440		540	400		200		400	70		3	5
	500		5,5 5,5	506 606	540 640		740	600		200		500 600	20		4	7
				806	840		940	800				800	70 70		5	9
800 1 025,5 806					840	040 740				200	,	800	70		,	,
Baugröße	B1	B2	В3	B4	B5	В6	B7	B8		В9	B10	B11	D1	D2	D3	D4
Budgrobe	51	52				50	5,	50		ر	510	511	Ø	Ø	Ø	Ø
			±0,1		±0,04	±0,1							h7	g7		
33	60	40	36	30	30	25	8,5	37,4	ļ	8,9	23	30	8	38	34	5,5
46	86	48	36	46	46	42	10	54,4	ŀ	10	46	46	10	38	34	6,6
					_											
Baugröße	D5	D6	D7	D8	D9	D10	D11	H1		Н3	H4	H5	H6	H7	'	L2
	Ø		Ø													S
			H7									±0,1				
33	9,5	M5	4	M5	M2,6	M2	М3	43		20	23	29	33	5	107	94,3
46	11	M6	5	M5	M2,6	M2	M4	60		29	32	29	46	8	140	123,5
Baugröße	L9	L10	L11	L	.12	L	.13		L14		L	15	L16	L17	7 L18	L19
					S		S	±0,0	4	S ±0,1		S				
33	50	58	11	76	50,5	54	28,5	42		6	30	14,25	26	22	20	9
46	70	72,5	13	110	77	81	48	28		11	46	24	33,5	25	19,	5 18
Baugröße	L20	L2	1	L22	L24	T1	T:	2	T3	3	T4	T5	T6		T7	T8
	±0,1			±0,1												
33	±0,1	2		±0,1 4	100	5,4	6		2,5	5	10	3,5	5	\blacksquare	6	2
46	65,5	2		6	100	6,5	9		2,5		10	4	5			2
,0	0,00			J	100	0,7			۷,-	-	10		,		J	

FESTO

Bestellangaben – Produktbaukasten

Be	stelltabelle								
Ва	ugröße		20	26	33	46	Bedin- gungen	Code	Eintrag Code
M	Baukasten-Nr.		562754	562755	562756	562757			
	Antriebsfunktion		Elektrischer So	hlittenantrieb, mit I	Kugelkette			EGSP	EGSP
	Baugröße		20	26	33	46			
	Standard-Hub	[mm]	25	-				-25	
	für Standardschlitten		-	50	-			-50	
			75	-				-75	
			_	100		-		-100	
			125	-				-125	
			_	150	_			-150	
			_	200				-200	
		, ,	-		300			-300	
			-		400			-400	
			-		500			-500	
			-		600			-600	
			-			800		-800	
	Standard-Hub	[mm]	-		130	-		-130	
	für Schlitten, kurz		-		230	-		-230	
			_		lass	240		-240	
			_		330	-		-330	
			_		/20	340		-340	
			_		430	-		-430	
			_		F30	440		-440 -530	
			_		530	540		-540	
			_		630	540		-630	
					630	640		-640	
						840		-840	
	Spindelsteigung	[mm]	1			040		-040 -1P	
	Spindersteigung	[mm]	-	2				-1P -2P	
			6	Z		-		-6P	
			-	-	10			-10P	
			20		20			-20P	
า	Genauigkeit		Standardgena	uigkoit					
2	Genauigkeit		Höhere Genau					-H	
			Präzisionsgena				1	-п -Р	
	Schlittenausführung		Standardschlit					-	
	Schuttenaustumung		_	.(כוו	2	 -S			
	Zusatzschlitten		Kein Zusatzsch	litten	كا	_			
	Lusuizschillich			n (Zusatzschlitten Z	S 3	- Z			
				s einen kurzen Schl		Sermittendasidinding		_	

1	Р	Bei Baugröße 46 nicht in Verbindung mit Hub für Standardschlitten 800 und Hub für Schlitten, kurz	840

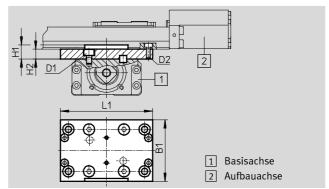
Übertrag Be	Übertrag Bestellcode															
		EGSP	-		-		-		-		-		-		-	

S Bei Baugröße 33 nicht in Verbindung mit Spindelsteigung 20
 Bei Baugröße 20 nicht in Verbindung mit Hub für Standardschlitten 25 Bei Baugröße 26 nicht in Verbindung mit Hub für Standardschlitten 50 Bei Baugröße 33 nicht in Verbindung mit Hub für Standardschlitten 100

Zulässige Achs-/Motor-Kombi	nationen mit Axialbausatz – Ohne G	ietriebe	Datenblätter → Internet: eamm-a
Motor	Axialbausatz	Axialbausatz besteht aus:	
		Motorflansch	Kupplung
			D. 18. 18.
Тур	Teile-Nr. Typ	Teile-Nr. Typ	Teile-Nr. Typ
EGSK-15			
mit Servomotor			
EMME-AS-40	1982886	1982014	2310368
	EAMM-A-P3-28D-40P	EAMF-A-28D-40P	EAMC-16-20-3-8
mit Schrittmotor	·	<u> </u>	<u> </u>
EMMS-ST-28	1703478 EAMM-A-P3-28D-28A	1087613 EAMF-A-28D-28A	562672 EAMC-16-20-3-5
EGSK-20/EGSP-20			
mit Servomotor			
EMME-AS-40	1983071	1976704	562675
EMME A5 40	EAMM-A-P4-28B-40P	EAMF-A-28B-40P	EAMC-16-20-4-8
EMMS-AS-40	562637	552163	562673
	EAMM-A-P4-28B-40A	EAMF-A-28B-40A	EAMC-16-20-4-6
mit Schrittmotor			
EMMS-ST-28	1731466	1704476	562674
	EAMM-A-P4-28B-28A	EAMF-A-28B-28A	EAMC-16-20-4-5
EMMS-ST-42	562636	552164	562674
	EAMM-A-P4-28B-42A	EAMF-A-28B-42A	EAMC-16-20-4-5
		·	•
EGSK-26/EGSP-26			
mit Servomotor			
EMME-AS-40	1983122	1976704	562677
FMMC 4C /0	EAMM-A-P5-28B-40P	EAMF-A-28B-40P	EAMC-16-20-5-8
EMMS-AS-40	562641	552163	543419
2001 200	EAMM-A-P5-28B-40A	EAMF-A-28B-40A	EAMC-16-20-5-6
mit Schrittmotor EMMS-ST-28	1721676	170/67/	5/2/7/
EMM3-31-28	1731474 EAMM-A-P5-28B-28A	1704476 EAMF-A-28B-28A	562676 EAMC-16-20-5-5
EMMS-ST-42			562676
LIMINIJ-31-44	562640 EAMM-A-P5-28B-42A	552164 EAMF-A-28B-42A	EAMC-16-20-5-5
	EARIM A-1 3-200-42A	EAST A-200-72A	Emilie 10-20-3-3
EGSK-33			
mit Servomotor			
EMME-AS-40	1983450	1984478	533708
	EAMM-A-P6-38A-40P	EAMF-A-38A-40P	EAMC-30-32-6-8
EMMS-AS-40	562646	562667	558312
	EAMM-A-P6-38A-40A	EAMF-A-38A-40A	EAMC-30-32-6-6
EMMS-AS-55	562647	558176	551003
	EAMM-A-P6-38A-55A	EAMF-A-38A-55A	EAMC-30-32-6-9
EMME-AS-60	2264375	1987412	1233256
	EAMM-A-P6-38A-60P	EAMF-A-38A-60P	EAMC-30-32-6-14
mit Schrittmotor			
EMMS-ST-42	562644	562668	561333
	EAMM-A-P6-38A-42A	EAMF-A-38A-42A	EAMC-30-32-5-6
EMMS-ST-57	562645	560692	551002
	EAMM-A-P6-38A-57A	EAMF-A-38A-57A	EAMC-30-32-6-6.35

Zulässige Achs-/Motor-Ko	mbinationen mit Axialbausatz – Ohne G	etriebe	Datenblätter → Internet: eamm-a
Motor	Axialbausatz	Axialbausatz besteht aus:	
		Motorflansch	Kupplung
			O BEE
Тур	Teile-Nr.	Teile-Nr.	Teile-Nr.
	Тур	Тур	Тур
EGSK-46/EGSP-33			
mit Servomotor			
EMME-AS-40	1986292	1984478	543422
	EAMM-A-P8-38A-40P	EAMF-A-38A-40P	EAMC-30-32-8-8
EMMS-AS-40	562652	562667	533708
	EAMM-A-P8-38A-40A	EAMF-A-38A-40A	EAMC-30-32-6-8
EMMS-AS-55	562653	558176	543423
	EAMM-A-P8-38A-55A	EAMF-A-38A-55A	EAMC-30-32-8-9
EMME-AS-60	1987308	1987412	562682
	EAMM-A-P8-38A-60P	EAMF-A-38A-60P	EAMC-30-32-8-14
EMMS-AS-70	564996	558018	551004
	EAMM-A-P8-38A-70A	EAMF-A-38A-70A	EAMC-30-32-8-11
mit Schrittmotor			
EMMS-ST-42	562650	562668	562678
	EAMM-A-P8-38A-42A	EAMF-A-38A-42A	EAMC-30-32-5-8
EMMS-ST-57	562651	560692	543421
	EAMM-A-P8-38A-57A	EAMF-A-38A-57A	EAMC-30-32-6.35-8
EMMS-ST-87	564998	560693	551004
	EAMM-A-P8-38A-87A	EAMF-A-38A-87A	EAMC-30-32-8-11
EGSP-46			
mit Servomotor	1	1	l
EMMS-AS-55	562659	558176	562680
FMMF 46 40	EAMM-A-P10-38A-55A	EAMF-A-38A-55A	EAMC-30-32-9-10
EMME-AS-60	2036017	1987412	562683
EMMS-AS-70	EAMM-A-P10-38A-60P	EAMF-A-38A-60P 558018	EAMC-30-32-10-14 565008
EMINI3-A3-/U	564997	558018 EAMF-A-38A-70A	
mit Schrittmotor	EAMM-A-P10-38A-70A	EANT-A-30A-/UA	EAMC-30-32-10-11
EMMS-ST-57	562658	560692	562679
EIVIIVI3-31-3/	EAMM-A-P10-38A-57A	EAMF-A-38A-57A	EAMC-30-32-6.35-10
EMMS-ST-87	564999	560693	565008
LIMINI3-31-0/	EAMM-A-P10-38A-87A	EAMF-A-38A-87A	EAMC-30-32-10-11
	EANINI-A-F10-30A-0/A	EMINIT-M-30A-0/A	EMMC-30-32-10-11

FESTO


Kreuzverbindungs-Bausatz EHAM

Werkstoff: Adapterplatte: Aluminium, eloxiert

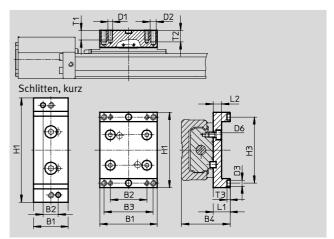
Schrauben, Passstifte: Stahl

Abmessungen und Bestellangaben										
für Baugröße		B1	D1	D2	H1	H2	L1	Gewicht	Teile-Nr.	Тур
Basisachse	Aufbauachse							[g]		
1	2	±0,2					±0,2			
20	15	33,2	M3	M3	7	5	56	27	563747	EHAM-S1-20-15
26	20	44	M4	M3	10	7	66	59	563748	EHAM-S1-26-20
33	26	54	M5	M4	12	9	86	124	563749	EHAM-S1-33-26
46	33	65	M6	M5	15	10	112	216	563750	EHAM-S1-46-33

FESTO

Schlittenadapter EASA

Werkstoff:


Adapterplatte: Aluminium,

eloxiert

Schrauben, Passstifte: Stahl

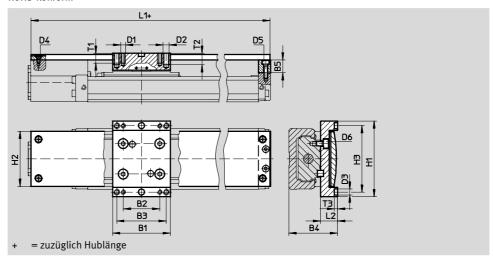
RoHS-konform

Abmessungen u	nd Bestellan	gaben								
für Baugröße	B1	B2	В3	B4	D1	D2	D3	D6	H1	H3
							Ø			
	±0,2						H7		±0,2	+0,04
mit Standardsch	litten									
15	23	14	-	25	M3	-	4	M3	44	38
20	33,2	23		32	M3		2	M3	52	44,5
26	47,4	30		40	M4		5	M4	62	54,5
33	54	40		48	M5		4	M5	86	74
46	81	30	48	68	M5	M6	5	M6	112	100
mit Schlitten, ku	rz									
33	28,5	12,5	-	48	M5	-	4	M5	86	74
46	48	22		68	M6		5	M6	112	100

für Baugröße	L1 +0,05	L2	T1	T2	T3 +0,1	Gewicht [g]	Teile-Nr.	Тур
mit Standardsch	litten							
15	10	5,4	6	-	2,5	20	562742	EASA-S1-15
20	12	6	6		2,5	38	562743	EASA-S1-20
26	14	7	8		2,5	74	562744	EASA-S1-26
33	15	9	15		2,6	130	562745	EASA-S1-33
46	22	10	10	12	2,6	310	562746	EASA-S1-46
mit Schlitten, ku	rz							
33	15	9	15	-	2,6	70	562747	EASA-S1-33-S
46	22	10	12	,	2,6	180	562748	EASA-S1-46-S

FESTO

Abdeckungsbausatz EASC


für Standardschlitten

Werkstoff:

Abdeckprofil, Adapterplatte, Adapter: Aluminium, eloxiert Schrauben, Passstifte: Stahl

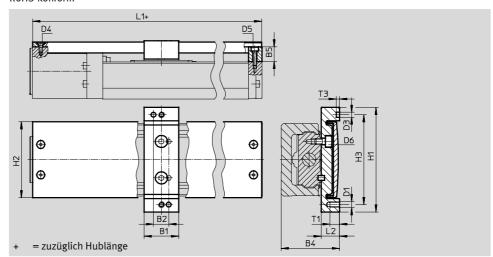
RoHS-konform

Abmessungen										
für Baugröße	B1	B2	В3	B4	B5	D1	D2	D3	D4	D5
								Ø		
	±0,2							H7		
15	23	14	-	25	6,5	M3	-	4	M2	M2
20	33,2	23	,	32	9	M3		2	M2,5	M2,5
26	47,4	30	•	40	10,5	M4		5	M2,5	M3
33	54	40	,	48	7	M5		4	M3	M3
46	81	30	48	68	10	M5	M6	5	M4	M4

für Baugröße	D6	H1	H2	Н3	L1	L2	T1	T2	T3
		±0,2	±0,2	±0,04	-0,3				+0,1
15	M3	44	30	38	96,7	10	6	-	2,5
20	M3	52	35,6	44,5	126,2	12	6		2,5
26	M4	62	45	54,5	156,2	14	8		2,5
33	M5	86	62,5	74	168,2	15	15		2,6
46	M6	112	82,4	100	224,7	22	10	12	2,6

Bestellar	ıgaben								
für Bau- größe	Hub	Gewicht	Teile-Nr.	Тур	für Bau- größe	Hub	Gewicht	Teile-Nr.	Тур
	[mm]	[g]				[mm]	[g]		
15	25	51	562707	EASC-S1-15-25	33	100	327	562718	EASC-S1-33-100
	50	57	562708	EASC-S1-15-50		200	391	562719	EASC-S1-33-200
	75	62	562709	EASC-S1-15-75		300	454	562720	EASC-S1-33-300
	100	67	562710	EASC-S1-15-100		400	518	562721	EASC-S1-33-400
20	25	92	562711	EASC-S1-20-25		500	581	562722	EASC-S1-33-500
	75	107	562712	EASC-S1-20-75		600	645	562723	EASC-S1-33-600
	125	121	562713	EASC-S1-20-125	46	200	850	562724	EASC-S1-46-200
26	50	187	562714	EASC-S1-26-50		300	965	562725	EASC-S1-46-300
	100	211	562715	EASC-S1-26-100		400	1 080	562726	EASC-S1-46-400
	150	234	562716	EASC-S1-26-150		500	1 200	562727	EASC-S1-46-500
	200	258	562717	EASC-S1-26-200		600	1 310	562728	EASC-S1-46-600
						800	1 540	562729	EASC-S1-46-800

FESTO


Abdeckungsbausatz EASC

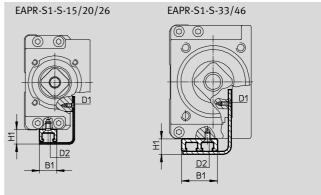
für Schlitten kurz

Werkstoff:

Abdeckprofil, Adapterplatte, Adapter: Aluminium, eloxiert Schrauben, Passstifte: Stahl RoHS-konform

Abmessungen								
für Baugröße	B1 ±0,2	B2 ±0,04	B4	B5	D1	D3 ∅ H7	D4	D5
33	28,5	12,5	48	7	M5	4	M3	M3
46	48	22	68	10	M6	5	M4	M4
für Baugröße	D6	H1	H2	Н3	L1	L2	T1	Т3
		±0,2	±0,2	±0,04	-0,3			+0,1
33	M5	86	62,5	74	138,2	15	15	2,6
46	M6	112	82,4	100	184,7	22	12	2,6

Bestellangabe	n		
für Baugröße	Hub	Gewicht	Teile-Nr. Typ
	[mm]	[g]	
33	130	263	562730 EASC-S1-33-130-S
	230	328	562731 EASC-S1-33-230-S
	330	391	562732 EASC-S1-33-330-S
	430	454	562733 EASC-S1-33-430-S
	530	518	562734 EASC-S1-33-530-S
	630	581	562735 EASC-S1-33-630-S
46	240	724	562736 EASC-S1-46-240-S
	340	840	562737 EASC-S1-46-340-S
	440	955	562738 EASC-S1-46-440-S
	540	1 070	562739 EASC-S1-46-540-S
	640	1 190	562740 EASC-S1-46-640-S
	840	1 420	562741 EASC-S1-46-840-S


FESTO

Sensorleiste EAPR

Werkstoff: Sensorhalter: Aluminium, eloxiert Schaltfahne, Schrauben: Stahl,

verzinkt RoHS-konform

Abmessungen						
für Baugröße	B1	H	1 1	D	1	D2
für Typ		EGSK	EGSP	EGSK	EGSP	
mit Standardsch	litten					
15		8,5	-	M2	-	M2
20	9	7,75	7,75	IVIZ	M1,6	M2,5
26		7,75	7,75	M3	M2	1012,5
33	19	7,75	8,5	M2	M2	M2,5
46	19	7,73	0,5	IVIZ	IVIZ	1012,5
mit Schlitten, kui	rz					
33	19	7,5	8,5	M2	M2	M2,5
46	19	8,5	0,5	1412	1412	1412,5

Bestellangabe	en		
für Baugröße	Hub	Gewicht	Teile-Nr. Typ
für Typ	[mm]	[g]	
mit Standards	chlitten		
15	25	10	562611 EAPR-S1-S-15-25
	50	12	562612 EAPR-S1-S-15-50
	75	14	562613 EAPR-S1-S-15-75
	100	16	562614 EAPR-S1-S-15-100
20	25	14	562615 EAPR-S1-S-20-25
	75	18	562616 EAPR-S1-S-20-75
	125	22	562617 EAPR-S1-S-20-125
26	50	24	562618 EAPR-S1-S-26-50
	100	28	562619 EAPR-S1-S-26-100
	150	32	562620 EAPR-S1-S-26-150
	200	37	562621 EAPR-S1-S-26-200
		•	<u> </u>
mit Standards	chlitten oder Schlitten, kurz		
33	100/130-S	51	562622 EAPR-S1-S-33-100/130-S
	200/230-S	69	562623 EAPR-S1-S-33-200/230-S
	300/330-S	88	562624 EAPR-S1-S-33-300/330-S
	400/430-S	106	562625 EAPR-S1-S-33-400/430-S
	500/530-S	125	562626 EAPR-S1-S-33-500/530-S
	600/630-S	144	562627 EAPR-S1-S-33-600/630-S
46	200/240-S	78	562628 EAPR-S1-S-46-200/240-S
	300/340-S	97	562629 EAPR-S1-S-46-300/340-S
	400/440-S	115	562630 EAPR-S1-S-46-400/440-S
	500/540-S	134	562631 EAPR-S1-S-46-500/540-S
	600/640-S	153	562632 EAPR-S1-S-46-600/640-S
	800/840-S	190	562633 EAPR-S1-S-46-800/840-S

FESTO

Bestellangaben – Zentrierstifte, Zentrierhülsen						
	für Baugröße	Bemerkung	Teile-Nr.	Тур	PE ¹⁾	
()	15	für Schlitten	189652	ZBH-5	10	
	20		525273	ZBS-2		
	26, 46		150928	ZBS-5		
	33		562959	ZBS-4		
	15, 33	für Schlittenadapter	562959	ZBS-4		
	20		525273	ZBS-2		
	26, 46		150928	ZBS-5		

¹⁾ Packungseinheit in Stück

Bestellanga	ben – Näherungsschalter für T-Nut, in	duktiv				Datenblätter → Internet: sies
	Befestigungsart	Schalt-	Elektrischer Anschluss	Kabellänge	Teile-Nr.	Тур
		ausgang		[m]		
Schließer						
	von oben in Nut einsetzbar, bündig	PNP	Kabel, 3-adrig	7,5	551386	SIES-8M-PS-24V-K-7,5-OE
SET WIT	mit Sensorleiste		Stecker M8x1, 3-polig	0,3	551387	SIES-8M-PS-24V-K-0,3-M8D
		NPN	Kabel, 3-adrig	7,5	551396	SIES-8M-NS-24V-K-7,5-OE
			Stecker M8x1, 3-polig	0,3	551397	SIES-8M-NS-24V-K-0,3-M8D
				•		
Öffner						
	von oben in Nut einsetzbar, bündig	PNP	Kabel, 3-adrig	7,5	551391	SIES-8M-PO-24V-K-7,5-OE
SET SET	mit Sensorleiste		Stecker M8x1, 3-polig	0,3	551392	SIES-8M-PO-24V-K-0,3-M8D
*		NPN	Kabel, 3-adrig	7,5	551401	SIES-8M-NO-24V-K-7,5-OE
			Stecker M8x1, 3-polig	0,3	551402	SIES-8M-NO-24V-K-0,3-M8D

Bes	tellangal	Datenblätter 🗲 Internet: nebu				
		Elektrischer Anschluss links	Elektrischer Anschluss rechts	Kabellänge	Teile-Nr.	Тур
				[m]		
		Dose gerade, M8x1, 3-polig	Kabel, offenes Ende, 3-adrig	2,5	541333	NEBU-M8G3-K-2.5-LE3
	•			5	541334	NEBU-M8G3-K-5-LE3
		Dose gewinkelt, M8x1, 3-polig	Kabel, offenes Ende, 3-adrig	2,5	541338	NEBU-M8W3-K-2.5-LE3
				5	541341	NEBU-M8W3-K-5-LE3