

Three-dimensional gantries

A three-dimensional gantry consists of horizontal gantry axes and a vertical drive.

- Can be used universally for handling light to heavy workpieces or high effective loads
- Ideal for very long strokes
- High mechanical rigidity and sturdy design
- Pneumatic and electrical components freely combinable
- As electrical solution variable positioning/any desired intermediate positions

Range of application:

- For any movement in 3D space
- Very high requirements on precision and/or very heavy workpieces, with long strokes at the same time

Planar surface gantry

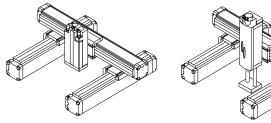
The planar surface gantry is equivalent to a threedimensional gantry, but without a Z-axis and allows free movement in the plane.

Example: automotive industry Load handling in assembly system for solenoids

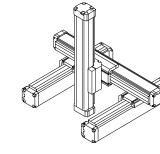
Requirements

- Flexible positioning
- High speed and long horizontal strokes
- Fast system availability
- Complete documentation of process values

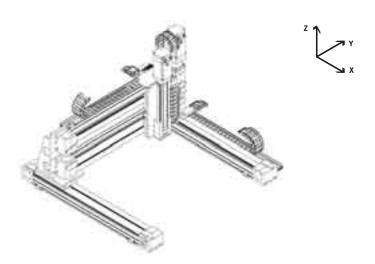
Solution


Three-dimensional gantry with toothed belt axes DGE from the multi-axis modular system

Туре	Important characteristics	Axis design	Effective load	Max. effective strokes	Components
 Three- dimensional gantry as mono axis Free move- ment of Z-axis in the available space (3D) 	 Compact design High process reliability thanks to installation integration Pneumatic and electric drives Repetition-accurate, centralised direct axis connections Pneumatic and electric drives (with freely programmable positions in X and Y) Very high dynamic response and precision 	X: Gantry axes Y: Gantry axes Z: Slides Cantilever axis	Mono: 0 to 6 kg	X: Up to 8500 mm Y: Up to 1500 mm Z: Up to 300 mm	X: DGE/ EGC Y: DGE/ EGC DGC/DGPL Z: DGSL EGSA
• See above	 See above, points 1–5 Z-axis with optional intermediate position (can be passed through) and clamping unit 	X: Gantry axes Y: Gantry axes Z: Cantilever axis	Mono: 0 to 5 kg	X: Up to 8500 mm Y: Up to 1500 mm Z: Up to 200 mm	X: DGE/ EGC Y: DGE/ EGC DGC/DGPL Z: HMPL
• See above	 See above, points 1–5 Z-axis with optional intermediate position and clamping unit 	X: Gantry axes Y: Gantry axes Z: Cantilever axis	Mono: 0 to 10 kg*	X: Up to 8500 mm Y: Up to 2000 mm Z: Up to 400 mm	X: DGE/ EGC Y: DGE/ EGC DGC/DGPL Z: HMP
 Three-dimensional gantry as mono or duo axis Free movement of Z-axis in the available space (3D) 	 See above, points 1–5 Z-axis alternative guides and drive concepts (motors) 	X: Gantry axes Y: Gantry axes Z: Cantilever axis	Mono: 0 to 15 kg Duo: 0 to 25 kg	X: Up to 8500 mm Y: Up to 2000 mm Z: Up to 900 mm	X: DGE/ EGC Y: DGE/ EGC DGC/DGPL Z: DGEA


• System solution for standardised three-dimensional gantries with effective load up to 50 kg on request

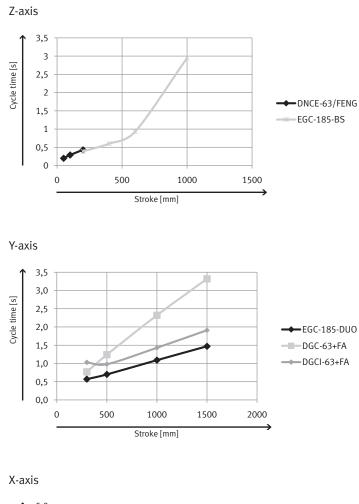
• Long strokes in X direction up to 10 m on request

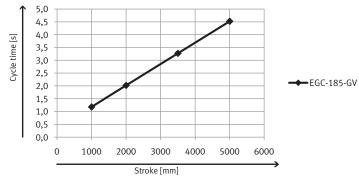

2009/09 - Subject to change - Handling system overview

* With the pneumatic drive DGC, can be used as duo axis

Standard 3D gantry RP 50

Effective load up to 50 kg




Technical data

		Stroke/mm	Intermed. position	Repetition accuracy/mm	
Z-axis	Ĵ			End position	Intermediate position
SP	EGC-120-BS-KF	0 1000	Any	± 0.08	± 0.08
SP	DNCE-63 with FENG	0 200	Any	± 0.02	± 0.02
Y-axis	\longleftrightarrow				
ZR	2 x EGC-185-TB-KF	0 1500	Any	± 0.08	± 0.08
SP	2 x EGC-185-BS-KF	0 1500	Any	± 0.02	± 0.02
Р	DGC-63 + FA	0 1500	1*	± 0.02	±0.02/±0.1
PS	DGCI-63 + FA	0 1500	2/any**	± 0.02/± 0.3	± 1/± 0.3
X-axis	5				
ZR	2 x EGC-185-TB-KF-GV	0 8500	Any	± 0.08	± 0.08

* More than 1 on request ** 2 with SPC11/CMPX, any with SPC200/CMAX *** With cushioning P1/Y3 **** With shock absorber YSR/YSRW Grey shading: drive components in the illustration EGC-HD: available end of 2011

Reference for cycle times

Note

Selection matrix Types of handling units → Pages 6 to 9

Handling components → Page 95

Gripping/rotating Adaptation options → Page 71

Control cabinets → Page 92

Frames → Page 78

CAD drawings/

CAD hotline 2D and 3D drawings → Tel. +49 (0)711 347-4667

Individual project engineering and cycle time calculation → Tel. +49 (0)711 347-4381

Fax enquiry Form → Page 101

Note

An operating pressure of 6 bar is assumed for all the pneumatic drives shown here.

Overview of Festo control products

	FED-CEC	CPX terminal			
	Integrated con- troller FED-CEC	CoDeSys controller CPX-CEC-C1	Motion con- troller CPX-CEC-M1		
	FED-CEC CAN-BUS SFC-DC MTR-DCI CMMX Single axis (point-to-point asynchronous)	C1: single axis M1: interpolation	C1: single axis M1: interpolation		
Maximum number of possible axes	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).	Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications).		
Motion		int-to-point asynchronous ery axis moves with its own pre-defined parameter e axes do not reach their end positions at the same time and the path is not defined			
			 2.5D interpolation PLC Open		
Special features	Integrated controller in a display screen	Function integration on the CPX valve	platform		
			 CNC editor DXF import Cam disk editor 		
Application examples	 Handling systems Pick & place, palletising 		Path control, bonding, cutting, handling, flying saw, cam disk		
Programming environment	CoDeSys	CoDeSys	CoDeSys + Softmotion		

Modular con-	r control Motion controller	CMXR robotic contr CMXR-C1	CMXR-C2		
troller CECX-C1	CECX-M1	(Basic)	(Advanced)		
SFC-DC MTR-DCI CMMx Single axis (point-to-point asynchronous)	FED CAN BUS SFC-DC MTR-DCI CMMX Interpolation (2.5D)	FED FED CAN-BUS CMMX Robotics (3D)	CAMBUS CMMX Robotics (3D)		
Recommended: 8 axes Note: one axis is treated as a CANope 128 nodes are possible (as defined by		Max. 6 interpolated axes, of which max. 3 basic axes and 1 orientation axis and max. 3 dependent auxiliary axes that are interpolated together with the kinematics system.			
			Additional single axes (not interpolated together with others) can be controlled via the integrated CoDeSys PLC. Recommended: 16 axes.		
		3D contour interpolation with an orientation axis for kinematics systems with up to 4 degrees of freedom. E.g. 3D gantry with an axis of rotation on the front end.			
	 2.5D interpolation PLC Open		CoDeSys control: point-to-point asyn- chronous		
 Powerful PLC Encoder interface Interrupt function Fast clock pulse inputs Profibus master Two Canbus masters RS 232/ RS 485-A/422-A 		 Economical design and configuration Simple programming of motions with no specialist expertise required Optional teach pendant with 2-channel Reduced speed in manual override in Automatic repositioning when conting Simple teaching of positions Definition of tools, allowing easy use Real orientation axes on the front end Integrated kinematics models e.g. for H- and T-gantries 	nel permission button node nuing interrupted motions e of multiple grippers d		
	 CNC editor DXF import Cam disk editor 		 Increased flexibility with the integrated CoDeSys PLC, e.g. for the integration of vision systems Tracking function for applications involving selecting items from a conveyor belt Speed-independent path switching points with time compensation, e.g. for bonding applications Complete automation of a cell is possible 		
 Handling systems Pick & place, palletising 	Path control, bonding, cutting, han- dling, flying saw, cam disk	Handling, palletising, bonding, metered dispensing, painting, cutting	Tracking applications such as pro- cessing of moving parts on a convey- or belt or synchronised kinematics movement with up to 6D		
CoDeSys	CoDeSys + Softmotion	Festo Teach Language (FTL)	FTL + CoDeSys		