Bellows cylinders EB/EBS

Bellows cylinders EB/EBS

Key features, product range overview and type code

Key features

Bellows cylinders function both as driving and pneumatic spring components. Bellows cylinders function as a driving component by providing pressurising and exhaust functions. As the stroke increases, the force generated is reduced in relation the contractional force of

Product range overview

the bellows. When bellows cylinders are supplied with permanent pressure, they function as a cushioning component. The simple design consists of two metal plates with a ribbed rubber bellows. There are no sealing components and no moving mechanical parts. Bellows

cylinders are single-acting drives that do not require spring returns, as the reset is performed through the application of external force. Rolling bellows have a different stroke/force characteristic to conventional bellows and can cover a wider stroke range in relation to installation height. With rolling bellows cylinders, the reduction in force only begins due to the contractional force of the bellows after approximately 50% of the stroke travelled.

Function	Variant	Туре	Size	Stroke	→ Page/Internet
				[mm]	
ingle-actin	Bellows				
5		EB	145	60	3
		Single-bellows	165	65	
		cylinder	215	80	
			250	85	
			325	95	
			385	115	
		EB	145	100	3
		Double-bellows	165	125	
	Cords stall	cylinder	215	155	
			250	185	
			325	215	
			385	230	
		1	1	L	•
	Rolling bellows				
	(P)	EBS	80	110	12
		Rolling bellows			
			100	105	
			100	105	

Type codes

		EB] –	250]-	85
Туре						
Single-act	ng		4			
EB	Bellows					
EBS	Rolling bellows					
Size						
Size						
m]						

Function

-0

General technical data

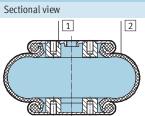
Diameter 145 ... 385 mm Stroke length 60 ... 230 mm

Size	145	165	215	250	325	385			
Pneumatic connection	G1⁄8	G1⁄4	G3⁄4	G3⁄4	G1⁄4	G1⁄4			
Mode of operation	Single-acting	ingle-acting							
Design	Bellows								
Type of mounting	With female thread	With female thread							
Mounting position	Any								

Operating and environmenta	Operating and environmental conditions							
Operating medium		Filtered compressed air, lubricated or unlubricated						
Operating pressure	[bar]	0 8						
Ambient temperature	[°C]	-40 +70						
Corrosion resistance class CRC ¹⁾		2						

1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

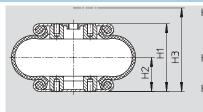

Forces [N]									
Size	145	165	215	250	325	385			
Single-bellows cylinder									
Force/stroke curve	→ 4		→ 5						
Resetting force	200				300				
Double-bellows cylinder									
Force/stroke curve	→ 6 → 7								
Resetting force	200		-		300				

Note

- Bellows cylinders may only be driven against a workpiece, or they must be equipped with stroke limiting stops at the stroke ends, because the bellows would otherwise be overloaded
- A resetting force is required in order to press the bellows cylinder together to its minimum height. As a rule, this is achieved through the applied load
- The entire bearing surfaces of the upper and lower plates must be utilised in order to absorb forces
- Bellows cylinders must be exhausted before disassembly
- The rubber bellows must not come into contact with other parts during operation

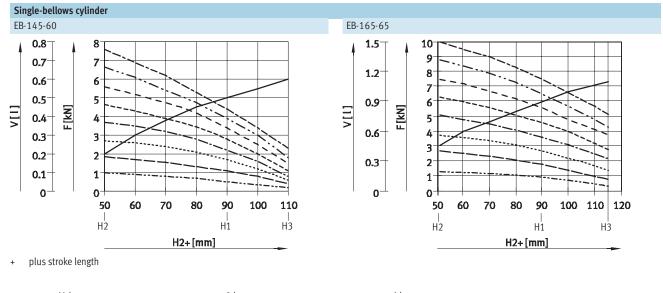
Weights [g]									
Size	145	165	215	250	325	385			
Single-bellows cylinder	900	1,200	2,000	2,300	4,100	5,800			
Double-bellows cylinder	1,100	1,500	2,300	3,000	4,800	6,900			

Materials

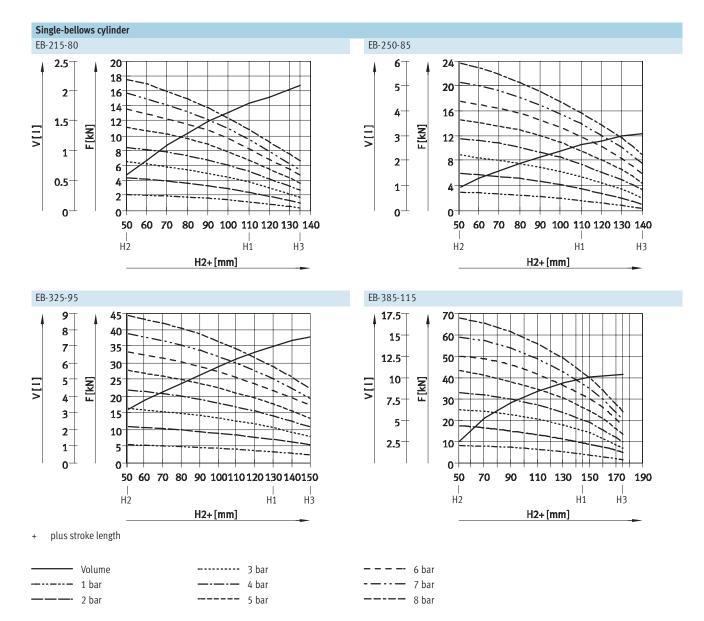


Bello	ws cylinder	
1	Housing	Galvanised steel
2	Bellows	Rubber
-	Note on materials	Free of copper, PTFE and silicone
		Conforms to RoHS

Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length

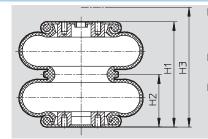

The diagram illustrates the change in thrust F with various working pressures and differing bellows volumes V in relation to stroke

length. The minimum installation height H2 must be observed in order to fully reach the indicated forces.


H1 Recommended operating height for cushioning applications at 6 bar H2 Minimum installation height

H3 Maximum extended end position

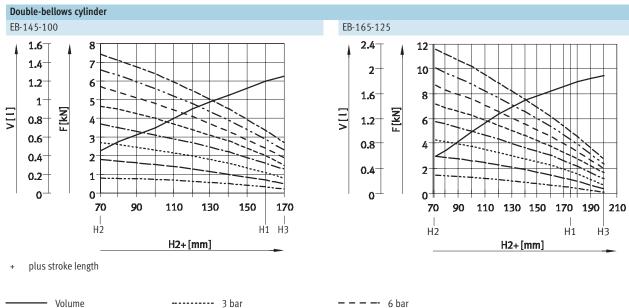
 Volume	 3 bar	 6 bar
 1 bar	 4 bar	 7 bar
 2 bar	 5 bar	 8 bar


Bellows cylinders EB

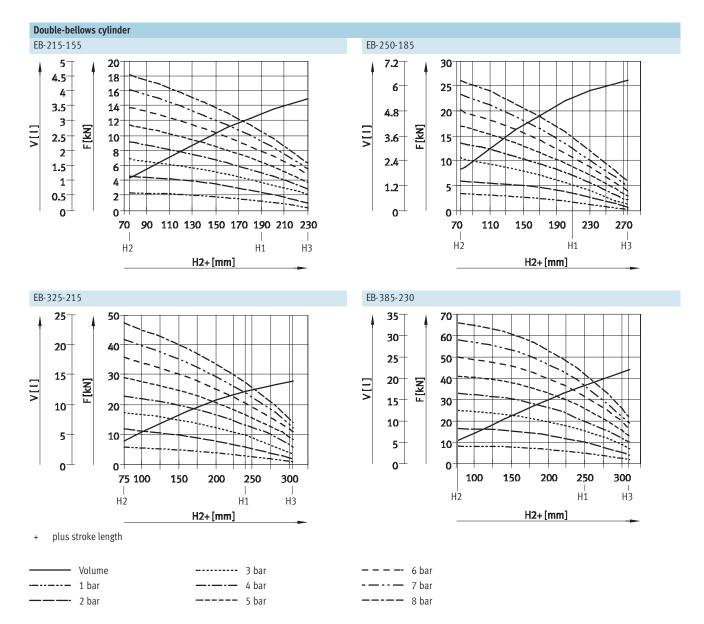
Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length

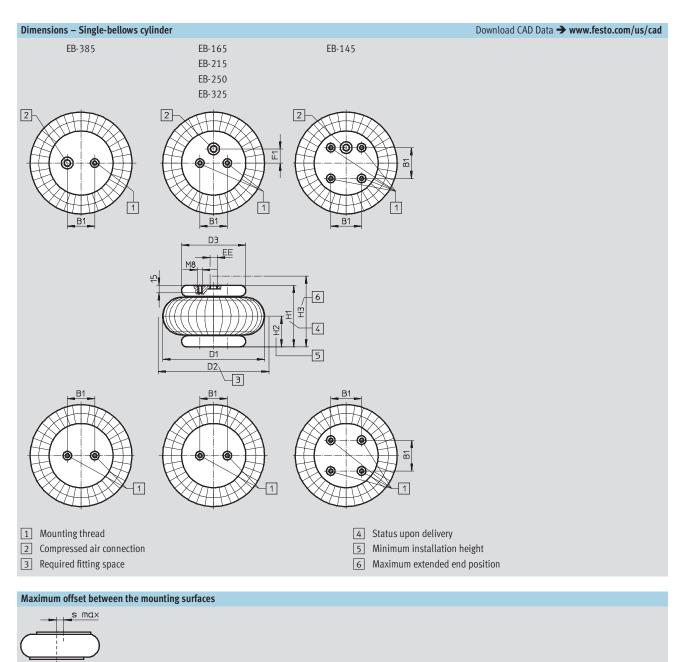
The diagram illustrates the change in thrust F with various working pressures and differing bellows volumes V in relation to stroke

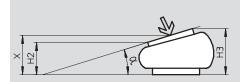
length. The minimum installation height H2 must be observed in order to fully reach the indicated forces.



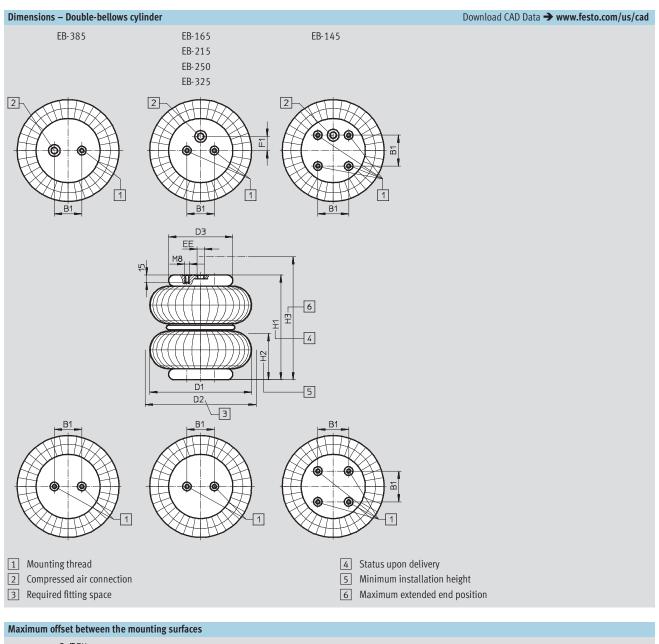
Recommended operating H1 height for cushioning applications at 6 bar


FESTO

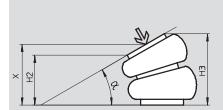

H2 Minimum installation height


H3 Maximum extended end position

votume	5 501	0 541
 1 bar	 4 bar	 7 bar
 2 bar	 5 bar	 8 bar


Note

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle α must not be exceeded. During setup it must be observed that the minimum height H2 is not fallen short of, and


that the maximum height H3 is not exceeded at any given point. The height at the centre of the plate X is the decisive factor in the calculation of the thrust.

Туре	B1 ±0.2	D1 Ø max.	D2 Ø	D3 Ø	EE	F1 ±0.2	H1	H2 min.	H3 max.	S _{max}	Tilt angle α max.
					- 1 (
EB-145-60	20	145	160	90	G1⁄8	-	90	50	110	10	20°
EB-165-65	44.5	165	180	108	G1⁄4	0	90	51	115	10	20°
EB-215-80	70	215	230	141	G3⁄4	0	110	50	135	10	20°
EB-250-85	89	250	265	161	G3⁄4	38.1	110	51	140	10	20°
EB-325-95	157.5	325	340	228	G1⁄4	73	130	51	150	10	15°
EB-385-115	158.8	385	400	287	G1⁄4	79.4	145	51	175	10	15°

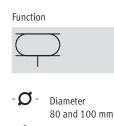
Ordering data	Ordering data – Single-bellows cylinder									
Size	Stroke	Part No.	Туре							
	[mm]									
145	60	36 486	EB-145-60							
165	65	36 487	EB-165-65							
215	80	36 488	EB-215-80							
250	85	36 489	EB-250-85							
325	95	193 788	EB-325-95							
385	115	193 789	EB-385-115							

s max

Note

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle $\,\alpha\,$ must not be exceeded. During setup it must be observed that the minimum height H2 is not fallen short of, and

that the maximum height H3 is not exceeded at any given point. The height at the centre of the plate X is the decisive factor in the calculation of the thrust.


Туре	B1 ±0.2	D1 Ø max.	D2 Ø	D3 Ø	EE	F1 ±0.2	H1	H2 min.	H3 max.	S _{max}	Tilt angle α max.
EB-145-100	20	145	160	90	G1⁄8	-	160	70	170	20	30°
EB-165-125	44.5	165	180	108	G1⁄4	0	175	72	200	20	30°
EB-215-155	70	215	230	141	G3⁄4	0	190	75	230	20	30°
EB-250-185	89	250	265	161	G3⁄4	38.1	210	75	275	20	25°
EB-325-215	157.5	325	340	228	G1⁄4	73	240	75	305	20	20°
EB-385-230	158.8	385	400	287	G1⁄4	79.4	250	77	310	20	20°

Ordering data – Double-bellows cylinder					
Size	Stroke	Part No.	Туре		
	[mm]				
145	100	36 490	EB-145-100		
165	125	36 491	EB-165-125		
215	155	36 492	EB-215-155		
250	185	36 493	EB-250-185		
325	215	193 790	EB-325-215		
385	230	193 791	EB-385-230		

- Type discontinued Available up until 2011

Bellows cylinders EBS Technical data

Stroke length 105 and 110 mm

General technical data

Size	80	100
Pneumatic connection	G3⁄8	
Mode of operation	Single-acting	
Design	Rolling bellows	
Type of mounting	With female thread	
Mounting position	Any	

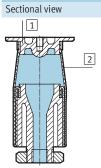
Operating and environmental conditions				
Operating medium		Filtered compressed air, lubricated or unlubricated		
Operating pressure	[bar]	0.9 8.0		
Ambient temperature	[°C]	-40 +70		
Corrosion resistance class (CRC ¹⁾	2		

1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Forces [N]					
Size	80	100			
Force/stroke curve	→13				
Resetting force	350	450			

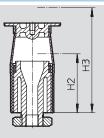
Note

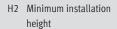

- Bellows cylinders may only be driven against a workpiece, or they must be equipped with stroke limiting stops at the stroke ends, because the bellows would otherwise be overloaded
- A resetting force is required in order to press the bellows cylinder together to its minimum height. As a rule, this is achieved through the applied load
- Rolling bellows require a minimum pressure of 0.9 bar in order to be able to roll on the piston. Consequently they must not be pushed back to their initial position when in the unpressurised state as this will damage the tube
- The entire bearing surfaces of the upper and lower plates must be utilised in order to absorb forces
- The rubber bellows must not come into contact with other parts during operation
- Bellows cylinders must be exhausted before disassembly

- Type discontinued Available up until 2011

Bellows cylinders EBS Technical data

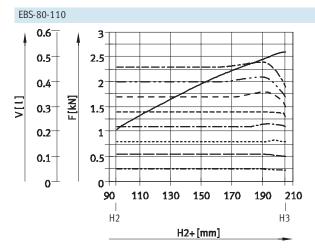
Weights [g]		
Size	80	100
Product weight	400	500

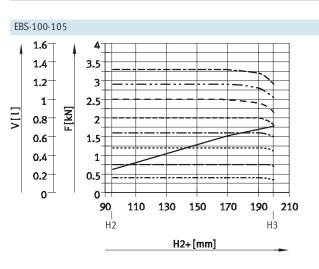

Materials



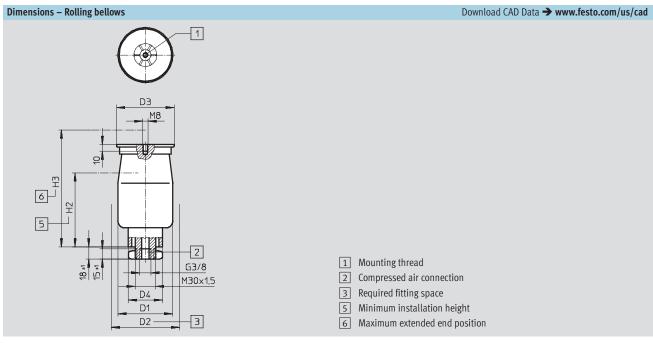
Bello	ows cylinder	
1	Housing	Polyamide, fibreglass reinforced
2	Bellows	Rubber
-	Note on materials	Free of copper, PTFE and silicone

Thrust F and bellows volume V as a function of the minimum installation height H2 + stroke length


The diagrams illustrate the change in thrust F with various working pressures and differing bellows volumes V in relation to stroke length. The minimum installation height H2 must be observed in order to fully reach the indicated forces.

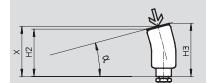

H3 Maximum extended end position

FESTO



plus stroke length +

 Volume	 3 bar	 6 bar
 1 bar	 4 bar	 7 bar
 2 bar	 5 bar	 8 bar



FESTO

Maximum offset between the mounting surfaces

Note

The stroke of the bellows cylinder can be made to describe a circular arc, in which case the indicated tilt angle $\,\alpha\,$ must not be exceeded. During setup it must be observed that the minimum height H2 is not fallen short of, and

that the maximum height H3 is not exceeded at any given point. The height at the centre of the plate X is the decisive factor in the calculation of the thrust.

Туре	D1 Ø max.	D2 Ø	D3 Ø ±1	D4 Ø ±0.5	H2 min.	H3 max.	S _{max}	Tilt angle α max.
EBS-80-110	80	100	76.5	50	95	205	10	15°
EBS-100-105	97	115	86.5	60.5	95	200	10	15°

Ordering data – Rolling bellows					
Size	Stroke [mm]	Part No.	Туре		
80	110	193 794	EBS-80-110		
100	105	193 795	EBS-100-105		

Product Range and Company Overview

A Complete Suite of Automation Services

Our experienced engineers provide complete support at every stage of your development process, including: conceptualization, analysis, engineering, design, assembly, documentation, validation, and production.

Custom Automation Components Complete custom engineered solutions

Custom Control Cabinets Comprehensive engineering support and on-site services

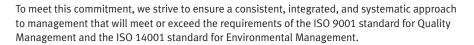
Complete Systems Shipment, stocking and storage services

The Broadest Range of Automation Components

With a comprehensive line of more than 30,000 automation components, Festo is capable of solving the most complex automation requirements.

Electromechanical Electromechanical actuators, motors, controllers & drives

Pneumatics Pneumatic linear and rotary actuators, valves, and air supply


PLCs and I/O Devices PLC's, operator interfaces, sensors and I/O devices

Supporting Advanced Automation... As No One Else Can!

Festo is a leading global manufacturer of pneumatic and electromechanical systems, components and controls for industrial automation, with more than 12,000 employees in 56 national headquarters serving more than 180 countries. For more than 80 years, Festo has continuously elevated the state of manufacturing with innovations and optimized motion control solutions that deliver higher performing, more profitable automated manufacturing and processing equipment. Our dedication to the advancement of automation extends beyond technology to the education and development of current and future automation and robotics designers with simulation tools, teaching programs, and on-site services.

Quality Assurance, ISO 9001 and ISO 14001 Certifications

Festo Corporation is committed to supply all Festo products and services that will meet or exceed our customers' requirements in product quality, delivery, customer service and satisfaction.

© Copyright 2008, Festo Corporation. While every effort is made to ensure that all dimensions and specifications are correct, Festo cannot guarantee that publications are completely free of any error, in particular typing or printing errors. Accordingly, Festo cannot be held responsible for the same. For Liability and Warranty conditions, refer to our "Terms and Conditions of Sale", available from your local Festo office. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of Festo. All technical data subject to change according to technical update.

FSC Printed on recycled paper at New Horizon Graphic, Inc., FSC certified as an environmentally friendly printing plant.

Festo North America

Festo Regional Contact Center

5300 Explorer Drive Mississauga, Ontario L4W 5G4 Canada

USA Customers:

For ordering assistance, Call: 1.800.99.FESTO (1.800.993.3786) Fax: 1.800.96.FESTO (1.800.963.3786) Email: customer.service@us.festo.com For technical support, Call: 1.866.GO.FESTO (1.866.463.3786) Fax: 1.800.96.FESTO (1.800.963.3786)

Email: product.support@us.festo.com Canadian Customers:

 Call:
 1.877.GO.FESTO (1.877.463.3786)
 Fax:
 1.877.FX.FESTO (1.877.393.3786)

 Email:
 festo.canada@ca.festo.com
 Fax:
 festo.canada@ca.festo.com

USA Headquarters

Festo Corporation 395 Moreland Road P.O. Box 18023 Hauppauge, NY 11788, USA www.festo.com/us

USA Sales Offices

Appleton North 922 Tower View Drive, Suite N Greenville, WI 54942, USA

Boston 120 Presidential Way, Suite 330 Woburn, MA 01801, USA

Chicago 1441 East Business Center Drive Mt. Prospect, IL 60056, USA Dallas

1825 Lakeway Drive, Suite 600 Lewisville, TX 75057, USA

Detroit – Automotive Engineering Center 2601 Cambridge Court, Suite 320 Auburn Hills, MI 48326, USA

New York 395 Moreland Road Hauppauge, NY 11788, USA Silicon Valley

4935 Southfront Road, Suite F Livermore, CA 94550, USA

Central USA

Festo Corporation 1441 East Business Center Drive Mt. Prospect, IL 60056, USA Phone: 1.847.759.2600 Fax: 1.847.768.9480

United States

USA Headquarters, East: Festo Corp., 395 Moreland Road, Hauppauge, NY 11788 Phone: 1.631.435.0800; Fax: 1.631.435.8026; Email: info@festo-usa.com www.festo.com/us

Canada

Headquarters: Festo Inc., 5300 Explorer Drive, Mississauga, Ontario L4W 5G4 Phone: 1.905.624.9000; Fax: 1.905.624.9001; Email: festo.canada@ca.festo.com www.festo.ca

Mexico

Headquarters: Festo Pneumatic, S.A., Av. Ceylán 3, Col. Tequesquinahuac, 54020 Tlalnepantla, Edo. de México Phone: 011 52 [55] 53 21 66 00; Fax: 011 52 [55] 53 21 66 65; Email: Festo.mexico@mx.festo.com www.festo.com/mx

 Western USA

 Festo Corporation

 4935 Southfront Road,

 Suite F

 Livermore, CA 94550, USA

 Phone: 1.925.371.1099

 Fax:
 1.925.245.1286

Festo Worldwide

Argentina Australia Austria Belarus Belgium Brazil Bulgaria Canada Chile China Colombia Croatia Czech Republic Denmark Estonia Finland France Germany Great Britain Greece Hong Kong Hungary India Indonesia Iran Ireland Israel Italy Japan Latvia Lithuania Malaysia Mexico Netherlands New Zealand Norway Peru Philippines Poland Romania Russia Serbia Singapore Slovakia Slovenia South Africa South Korea Spain Sweden Switzerland Taiwan Thailand Turkey Ukraine United States Venezuela

www.festo.com