Linear gantries # Movements in 2D: a linear gantry consists of a gantry axis and a yoke drive. - High mechanical rigidity and sturdy design - Pneumatic and electrical components freely combinable - As electrical solution variable positioning/any desired intermediate positions ## Range of application: - Ideal for long gantry strokes - Often used for feeding applications - Workpiece masses up to 5 kg (effective load up to 10 kg) - Long gantry strokes up to 3 m and heavy loads up to 10 kg - High requirements on system resistance to torsion # Example: construction materials industry Handling, palletising and packing of ceramic tiles # Requirements - High dynamic response - Gentle acceleration and braking - Jerk-free movement - Good positioning flexibility #### Solution - Linear gantry with toothed belt axes and cantilever axis - Complete solution, including vacuum gripper | Туре | Important characteristics | Axis design | Effective load | Max. effective strokes | Components | |---|---|---|--|---|---| | Linear gantry
as mono axis Free movement
of the Z-axis
in the vertical
plane (2D) | High process reliability thanks to installation integration Pneumatic and electric drives (with freely programmable positions) Repetition-accurate, centralised direct axis connections Mini slide on the Z-axis for maximum precision | Y:
Gantry axes
Z:
Slide
Cantilever axis | Mono:
0 to 6 kg | Y:
Up to 5000 mm
Z:
Up to 300 mm | Y:
DGC/ EGC
Z:
DGSL
EGSA | | • See above | See above, points 1–3 Pneumatic cantilever axis on the Z-axis with high repetition accuracy, high dynamic response and intermediate positions | Y:
Gantry axes
Z:
Handling axis | Mono:
0 to 5 kg | Y:
Up to 5000 mm
Z:
Up to 200 mm | Y:
DGC/ EGC
Z:
HMPL | | • See above | • See above, points 1–3 • Pneumatic handling axis on the Z-axis with high rigidity and intermediate positions | Y:
Gantry axes
Z:
Handling axis | Mono:
0 to 10 kg* | Y:
Up to 5000 mm
Z:
Up to 400 mm | Y:
DGC/ EGC
Z:
HMP | | Linear gantry
as mono or
duo axis Free movement
of the Z-axis in
the vertical
plane (2D) | See above, points 1-3 Electric cantilever axis on the Z-axis for large strokes, high dynamic response and low moving dead weight | Y:
Gantry axes
Z:
Cantilever axis | Mono:
0 to 15 kg
Duo:
0 25 kg | Y:
Up to 5000 mm
Z:
Up to 900 mm | Y:
DGC/ EGC
Z:
DGEA | 2009/09 – Subject to change – Handling system overview # Standard linear gantry LP 2 # Effective load up to 2 kg # Motor controller package on electric axes Servo motor: EMMS-AS Controller: CMMS/P-AS (CMMD) ## Technical data | | | Stroke/mm | Intermed. position | Repetition accu | ıracy/mm | |--------|-----------------------|-----------|--------------------|-----------------|-----------------------| | Z-axis | 1 | | | End position | Intermediate position | | ZR | DGEA-18 | 0 400 | Any | ± 0.05 | ± 0.05 | | SP | EGSA-50 | 0 100 | Any | ± 0.01 | ± 0.01 | | ES | EGSL-45 | 0 200 | Any | ± 0.015 | ± 0.015 | | Р | DGSL-12 | 0 200 | _ | ± 0.02**** | _ | | Р | DFM-16 | 0 200 | _ | ± 0.02 | ± 0.02 | | Y-axis | \longleftrightarrow | | | | | | ZR | EGC-80-TB-KF | 0 8500 | Any | ± 0.08 | ± 0.08 | | SP | EGC-80-BS-KF | 0 2000 | Any | ± 0.02 | ± 0.02 | | Р | DGC-25-KF | 0 8500 | 1* | ± 0.02 *** | ± 0.02/± 0.1**** | | PS | DGCI-25-KF | 0 2000 | 2/any** | Max. ± 0.4 | Max. ± 0.4/± 2 | Grey shading: drive components in the illustration ^{*} More than 1 on request ** 2 with SPC11/CMPX, any with SPC200/CMAX *** With shock absorber YSR/YSRW **** Intermediate position approached from either side ***** With cushioning P1/Y3 # Reference for cycle times ## Z-axis ## Y-axis # Note #### Selection matrix Types of handling units → Pages 6 to 9 # Handling components → Page 95 # Gripping/rotating Adaptation options → Page 71 ## **Control cabinets** → Page 92 #### Frames → Page 78 #### CAD drawings/ CAD hotline 2D and 3D drawings \rightarrow Tel. +49 (0)711 347-4667 # Individual project engineering and cycle time calculation \rightarrow Tel. +49 (0)711 347-4381 # Fax enquiry Form → Page 101 #### Note An operating pressure of 6 bar is assumed for all the pneumatic drives shown here. # **Overview of Festo control products** | | FED-CEC | CPX terminal | | | |---------------------------------|--|--|---|--| | | Integrated con-
troller FED-CEC | CoDeSys controller
CPX-CEC-C1 | Motion controller CPX-CEC-M1 | | | | SFC-DC MTR-DCI CMMx Single axis (point-to-point asynchronous) | CAN-Bus CAN | SFC-DC MTR-DCI CMMx C1: single axis M1: interpolation | | | Maximum number of possible axes | Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications). | Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications). | Recommended: 8 axes Note: one axis is treated as a CANopen node. 128 nodes are possible (as defined by CANopen specifications). | | | Motion | Point-to-point asynchronous Every axis moves with its own pre-do The axes do not reach their end pos | | | | | | | | • 2.5D interpolation • PLC Open | | | Special features | Integrated controller in a display screen | Function integration on the CPX valve | platform | | | | | | CNC editor DXF import Cam disk editor | | | Application examples | Handling systemsPick & place, palletising | 1 | Path control, bonding,
cutting, handling,
flying saw, cam disk | | | Programming environment | CoDeSys | CoDeSys | CoDeSys + Softmotion | | | Modula | r control | CMXR robotic controller | | | | |---|--|---|--|--|--| | Modular con-
troller CECX-C1 | Motion controller
CECX-M1 | CMXR-C1
(Basic) | CMXR-C2
(Advanced) | | | | Single axis (point-to-point asynchronous) | SFC-DC MTR-DCI CMMx Interpolation (2.5D) | CAN-Bus CMMx Robotics (3D) | Teach-Panel CAM-Bus CMMx Robotics (3D) | | | | Recommended: 8 axes
Note: one axis is treated as a CANope
128 nodes are possible (as defined by | n node.
[,] CANopen specifications). | Max. 6 interpolated axes, of which max. 3 basic axes and 1 orientation axis and max. 3 dependent auxiliary axes that are interpolated together with the kinematics system. | | | | | | | | Additional single axes (not interpolated together with others) can be controlled via the integrated CoDeSys PLC. Recommended: 16 axes. | | | | | | 3D contour interpolation with an orier with up to 4 degrees of freedom. E.g. 3D gantry with an axis of rotation | · | | | | | • 2.5D interpolation
• PLC Open | | CoDeSys control: point-to-point asyn-
chronous | | | | Powerful PLC Encoder interface Interrupt function Fast clock pulse inputs Profibus master Two Canbus masters RS 232/ RS 485-A/422-A | | Economical design and configuration Simple programming of motions with no specialist expertise required Optional teach pendant with 2-chan Reduced speed in manual override reduced speed | nel permission button
node
nuing interrupted motions
e of multiple grippers | | | | | CNC editor DXF import Cam disk editor | | Increased flexibility with the integrated CoDeSys PLC, e.g. for the integration of vision systems Tracking function for applications involving selecting items from a conveyor belt Speed-independent path switching points with time compensation, e.g. for bonding applications Complete automation of a cell is possible | | | | Handling systemsPick & place, palletising | Path control, bonding, cutting, handling, flying saw, cam disk | Handling, palletising, bonding, metered dispensing, painting, cutting | Tracking applications such as processing of moving parts on a conveyor belt or synchronised kinematics movement with up to 6D | | | | CoDeSys | CoDeSys + Softmotion | Festo Teach Language (FTL) | FTL + CoDeSys | | |