Balgzylinder EB/EBS

FESTO

- Lieferbar bis 2011

Balgzylinder EB/EBS

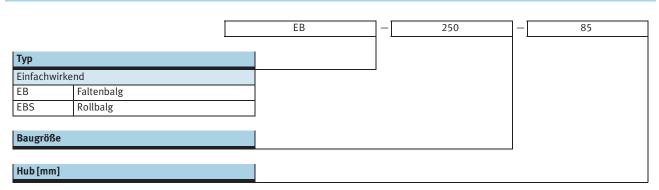
Merkmale, Lieferübersicht und Typenschlüssel

FESTO

Merkmale

- Geeignet für den Einsatz unter rauen, staubigen Umgebungsbedingungen
- Einsetzbar unter Wasser
- Robuste Bauweise
- Großer Kraftbereich von 2 ... 50 KN
- Geringe Einbauhöhe
- Kein Stick-Slip-Effekt
- Wartungsfrei

Balgzylinder sind sowohl Antriebs- als auch Luftfederelemente. Durch Be- und Entlüften wirken die Balgzylinder als Antriebselement. Mit zunehmendem Hub wird die erzeugte Kraft abhängig von der Einschnürung des Balgs geringer. Werden Balgzylinder mit einem permanenten Druck beaufschlagt, wirken sie als Dämpfungselement. Der ein-


fache Aufbau besteht aus zwei Metallplatten mit einem einrollierten Gummibalg. Es gibt keine Dichtungselemente und mechanisch bewegte Teile. Balgzylinder sind einfachwirkende Antriebe, die keine Rückstellfeder benötigen, da die Rückstellung durch äußere Krafteinwirkung erfolgt.

Schlauchrollbälge unterscheiden sich zu den Faltenbälgen im Hub-Kraft-Verlauf und können in Relation zur Einbauhöhe einen größeren Hubbereich abdecken.
Bei Schlauchrollbälgen beginnt die Kraftreduzierung durch das Einschnüren des Balgs erst nach etwa 50 % des zurückgelegten Hubs.

Lieferübersicht

Funktion	Ausführung	Тур	Baugröße	Hub	→ Seite/Internet
				[mm]	
Einfach-	Faltenbalg				
wirkend		EB	145	60	3
		Einfalten-	165	65	
		Balgzylinder	215	80	
			250	85	
			325	95	
			385	115	
	-	EB	145	100	3
		Zweifalten-	165	125	
		Balgzylinder	215	155	
			250	185	
			325	215	
			385	230	
		•		·	·
	Rollbalg				
		EBS	80	110	12
		Schlauchroll-			
		Balgzylinder	100	105	
				103	

Typenschlüssel

Funktion

Durchmesser 145 ... 385 mm

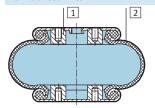
Hublänge 60 ... 230 mm

Allgemeine Technische Daten								
Baugröße	145	165	215	250	325	385		
Pneumatischer Anschluss	G1/8	G1/4	G3/4	G3/4	G1/4	G1/4		
Funktionsweise	einfachwirk	einfachwirkend						
Konstruktiver Aufbau	Faltenbalg	Faltenbalg						
Befestigungsart	mit Innenge	mit Innengewinde						
Einbaulage	beliebig	beliebig						

Betriebs- und Umweltbedingungen							
Betriebsmedium		gefilterte Druckluft, geölt oder ungeölt					
Betriebsdruck	[bar]	08					
Umgebungstemperatur	[°C]	-40 +70					
Korrosionsbeständigkeit KBK ¹⁾		2					

1) Korrosionsbeständigkeitsklasse 2 nach Festo Norm 940 070 Bauteile mit mäßiger Korrosionsbeanspruchung. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre bzw. Medien, wie Kühl- und Schmierstoffe stehen.

Kräfte [N]									
Baugröße	145	165	215	250	325	385			
Einfalten-Balgzylinder									
Kraft-Hubverlauf	→ 4		→ 5						
Rückstellkraft	200				300				
Zweifalten-Balgzylinder									
Kraft-Hubverlauf	→ 6		→ 7						
Rückstellkraft	200				300				

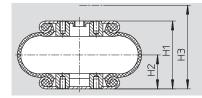

- Hinweis
- Balgzylinder dürfen nur gegen ein Werkstück gefahren werden oder müssen an den Endpunkten des Hubes mit Hubbegrenzungsanschlägen versehen sein, da sonst die Belastung der Balgwand zu groß wird
- Um den Balgzylinder auf die Minimalhöhe zusammenzudrücken, wird eine Rückstellkraft benötigt. Diese ergibt sich in den meisten Anwendungsfällen durch die aufliegende Gewichtskraft
- Zur Aufnahme von Kräften muss die gesamte Auflagefläche der oberen und unteren Platte genutzt werden
- Vor dem Ausbau müssen Balgzylinder entlüftet werden
- Balgzylinder dürfen während des Betriebes an der Balgwand nicht mit anderen Teilen in Berührung kommen

FESTO

Gewichte [g]									
Baugröße	145	165	215	250	325	385			
Einfalten-Balgzylinder	900	1 200	2 000	2 300	4 100	5 800			
Zweifalten-Balgzylinder	1 100	1 500	2 300	3 000	4 800	6 900			

Werkstoffe

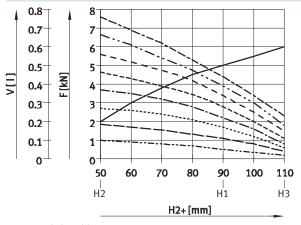
Funktionsschnitt

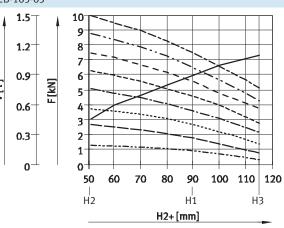


В	Balgzylinder						
1	Gehäuse	Stahl, verzinkt					
2	Balg	Gummi					
-	Werkstoffhinweis	Kupfer-, PTFE- und silikonfrei					
		RoHS-konform					

Schubkraft F und Balgvolumen V in Abhängigkeit der minimalen Einbauhöhe H2 + Hublänge

Das Diagramm zeigt die Veränderung der Schubkraft F bei verschiedenen Arbeitsdrücken und die Veränderung des Balgvolumens V, jeweils in Abhängigkeit

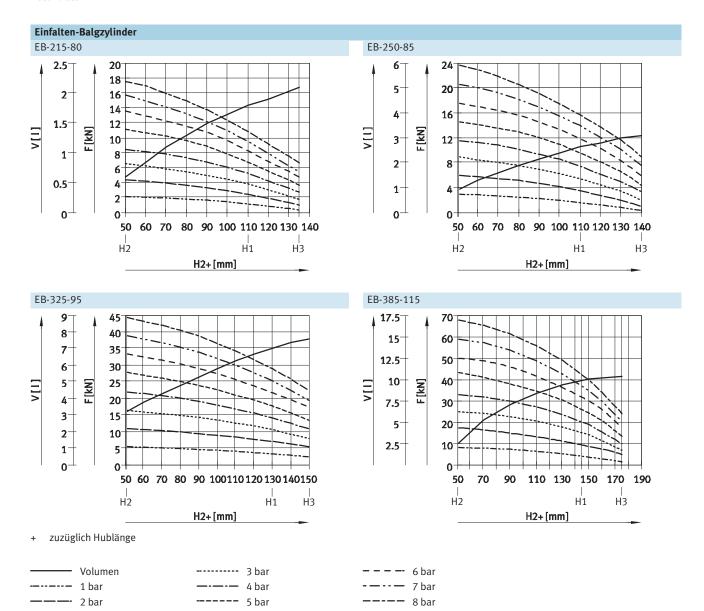

der Hublänge. Um die vollen angegebenen Kräfte zu erreichen, ist unbedingt die minimale Einbauhöhe H2 zu beachten.


- H1 Nennhöhe bei 6 bar
- H2 Minimale Einbauhöhe
- H3 Maximale ausgefahrene Höhe

Einfalten-Balgzylinder

EB-145-60

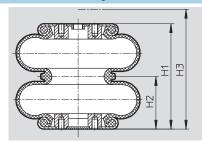
EB-165-65



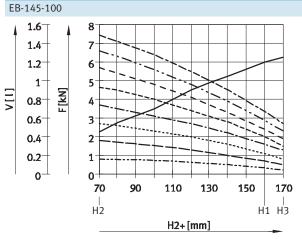
zuzüglich Hublänge

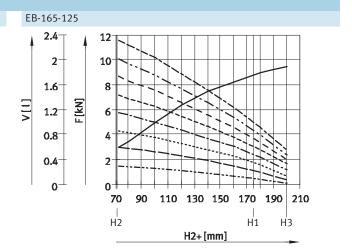
 Volumen
 1 bar
2

 3 ba
 4 ba
 5 ba


FESTO

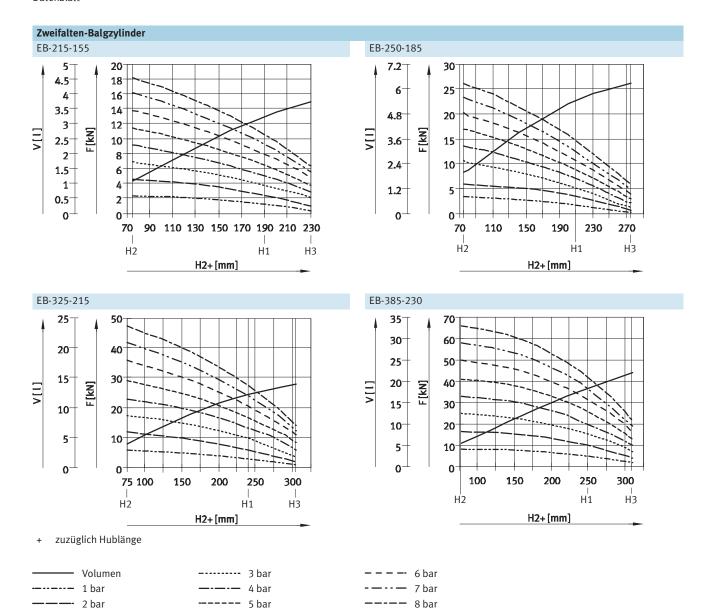
Schubkraft F und Balgvolumen V in Abhängigkeit von der minimalen Einbauhöhe H2 + Hublänge

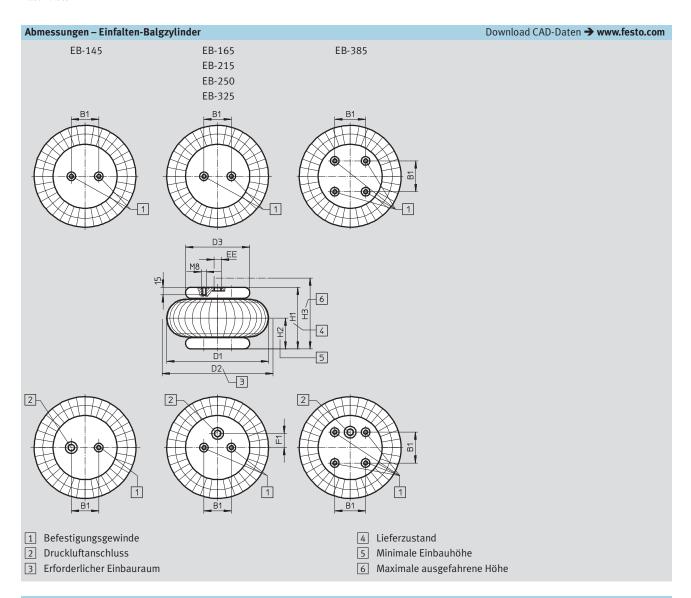

Das Diagramm zeigt die Veränderung der Schubkraft F bei verschiedenen Arbeitsdrücken und die Veränderung des Balgvolumens V, jeweils in Abhängigkeit


der Hublänge. Um die vollen angegebenen Kräfte zu erreichen, ist unbedingt die minimale Einbauhöhe H2 zu beachten.

- H1 Nennhöhe bei 6 bar
- H2 Minimale Einbauhöhe
- H3 Maximale ausgefahrene Höhe

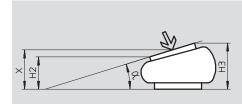
Zweifalten-Balgzylinder


zuzüglich Hublänge


Volumen ---- 1 bar ----- 2 bar

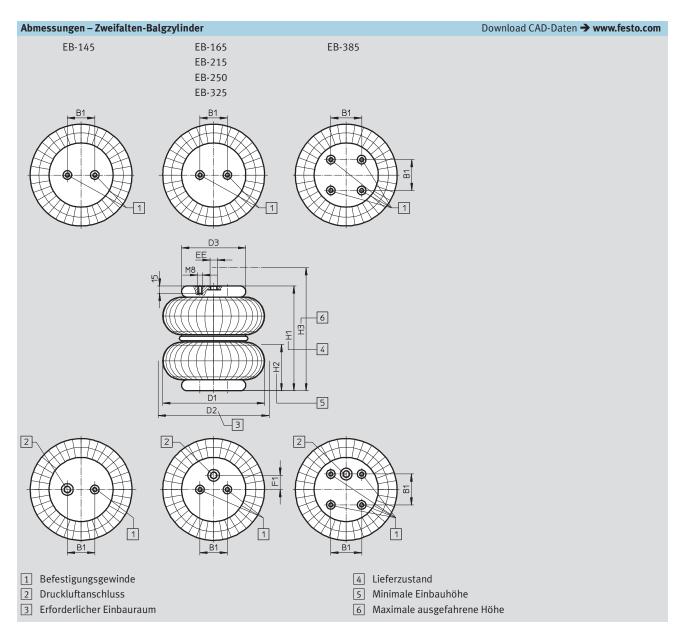
---- 4 bar ---- 5 bar

6 bar 7 bar ---- 8 bar


FESTO

Maximaler Versatz zwischen den Befestigungsflächen

Hinweis


Balgzylinder können ihren Hub entlang einer Kreisbahn ausführen, hierbei darf der angegebene Kippwinkel α nicht überschritten werden. Bei der Auslegung ist zu beachten, dass an keiner Stelle

die minimale Höhe H2 unterschritten und die maximale Höhe H3 überschritten werden darf. Für die Berechnung der Hubkraft ist die Höhe in Plattenmitte X maßgebend.

Тур	B1	D1 Ø	D2 Ø	D3 Ø	EE	F1	H1	H2	Н3	s _{max}	Kippwinkel α
	±0,2	max.				±0,2		min.	max.		max.
EB-145-60	20	145	160	90	G1/8	-	90	50	110	10	20°
EB-165-65	44,5	165	180	108	G1/4	0	90	51	115	10	20°
EB-215-80	70	215	230	141	G3/4	0	110	50	135	10	20°
EB-250-85	89	250	265	161	G3/4	38,1	110	51	140	10	20°
EB-325-95	157,5	325	340	228	G1/4	73	130	51	150	10	15°
EB-385-115	158,8	385	400	287	G1/4	79,4	145	51	175	10	15°

Bestellanga	Bestellangaben – Einfalten-Balgzylinder							
Baugröße	Hub	Teile-Nr.	Тур					
	[mm]							
145	60	36 486	EB-145-60					
165	65	36 487	EB-165-65					
215	80	36 488	EB-215-80					
250	85	36 489	EB-250-85					
325	95	193 788	EB-325-95					
385	115	193 789	EB-385-115					

Maximaler Versatz zwischen den Befestigungsflächen

Balgzylinder können ihren Hub entlang einer Kreisbahn ausführen, hierbei darf der angegebene Kippwinkel α nicht überschritten werden. Bei der Auslegung ist zu

beachten, dass an keiner Stelle

die minimale Höhe H2 unterschritten und die maximale Höhe H3 überschritten werden darf. Für die Berechnung der Hubkraft ist die Höhe in Plattenmitte X maßgebend.

Тур	B1	D1	D2	D3	EE	F1	H1	H2	Н3	s _{max}	Kippwinkel
		Ø	Ø	Ø							α
	±0,2	max.				±0,2		min.	max.		max.
EB-145-100	20	145	160	90	G1/8	-	160	70	170	20	30°
EB-165-125	44,5	165	180	108	G1/4	0	175	72	200	20	30°
EB-215-155	70	215	230	141	G3/4	0	190	75	230	20	30°
EB-250-185	89	250	265	161	G3/4	38,1	210	75	275	20	25°
EB-325-215	157,5	325	340	228	G1/4	73	240	75	305	20	20°
EB-385-230	158,8	385	400	287	G1/4	79,4	250	77	310	20	20°

Bestellangaben – Zweifalten-Balgzylinder							
Baugröße	Hub	Teile-Nr.	Тур				
	[mm]						
145	100	36 490	EB-145-100				
165	125	36 491	EB-165-125				
215	155	36 492	EB-215-155				
250	185	36 493	EB-250-185				
325	215	193 790	EB-325-215				
385	230	193 791	EB-385-230				

- L - Auslauftyp Lieferbar bis 2011

Balgzylinder EBS Datenblatt

FESTO

Funktion

Durchmesser 80 und 100 mm

Hublänge 105 und 110 mm

Allgemeine Technische Daten				
Baugröße	80	100		
Pneumatischer Anschluss	G3/8			
Funktionsweise	einfachwirkend			
Konstruktiver Aufbau	Rollbalg			
Befestigungsart	mit Innengewinde			
Einbaulage	beliebig			

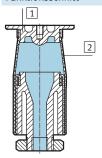
Betriebs- und Umweltbedingungen				
Betriebsmedium		gefilterte Druckluft, geölt oder ungeölt		
Betriebsdruck [bar]		0,9 8,0		
Umgebungstemperatur	[°C]	-40 +70		
Korrosionsbeständigkeit KBK ¹⁾		2		

Korrosionsbeständigkeitsklasse 2 nach Festo Norm 940 070 Bauteile mit mäßiger Korrosionsbeanspruchung. Außenliegende sichtbare Teile mit vorrangig dekorativer Anforderung an die Oberfläche, die im direkten Kontakt zur umgebenden industrieüblichen Atmosphäre bzw. Medien, wie Kühl- und Schmierstoffe stehen.

Kräfte [N]				
Baugröße	80	100		
Kraft-Hubverlauf	→ 13			

- Hinweis
- Balgzylinder dürfen nur gegen ein Werkstück gefahren werden oder müssen an den Endpunkten des Hubes mit Hubbegrenzungsanschlägen versehen sein, da sonst die Belastung der Balgwand zu groß wird
- Um den Balgzylinder auf die Minimalhöhe zusammenzudrücken, wird eine Rückstellkraft benötigt. Diese ergibt sich in den meisten Anwendungsfällen durch die aufliegende Gewichtskraft
- Schlauchrollbeläge benötigen einen Mindestdruck von 0.9 bar, um auf dem Kolben rollen zu können. Der Schlauchrollbalg darf also nicht im drucklosen Zustand in die Ausgangslage zurückgeschoben werden, da sonst der Schlauch beschädigt wird
- Zur Aufnahme von Kräften muss die ganze Auflagefläche der oberen und unteren Platte genutzt werden
- Balgzylinder dürfen während des Betriebes an der Balgwand nicht mit anderen Teilen in Berührung kommen
- Balgzylinder müssen vor dem Ausbau entlüftet werden

- Lauftyp Lieferbar bis 2011

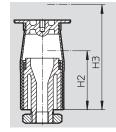

Balgzylinder EBS Datenblatt

FESTO

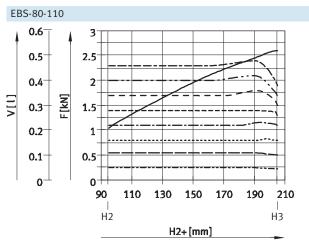
Gewichte [g]				
Baugröße	80	100		
Produktgewicht	400	500		

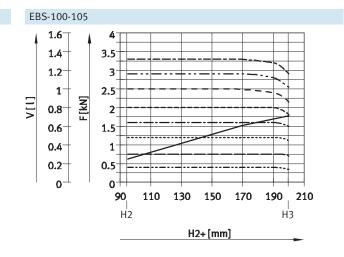
Werkstoffe

Funktionsschnitt



Balgzylinder					
Gehäuse Polyamid, glasfaserverstärkt					
2	Balg	Gummi			
-	Werkstoffhinweis	Kupfer-, PTFE- und silikonfrei			

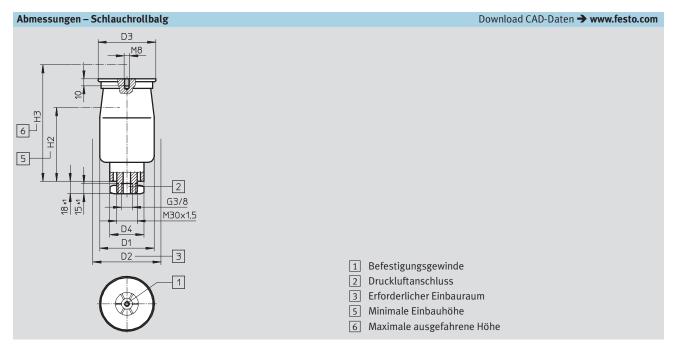

Schubkraft F und Balgvolumen V in Abhängigkeit der minimalen Einbauhöhe H2 + Hublänge

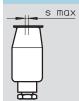

Die Diagramme zeigen die Veränderung der Schubkraft F bei verschiedenen Arbeitsdrücken und die Veränderung des Balgvolumens V, jeweils in Abhängigkeit

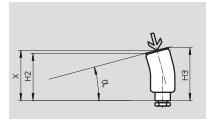
von der Hublänge. Um die vollen angegebenen Kräfte zu erreichen, ist unbedingt die minimale Einbauhöhe H2 zu beachten.

- H2 Minimale Einbauhöhe
- H3 Maximale ausgefahrene Höhe

zuzüglich Hublänge


 Volumen	 3 bar
 1 bar	 4 bar
 2 bar	 5 bar


- Lauftyp Lieferbar bis 2011


Balgzylinder EBS Datenblatt

FESTO

Maximaler Versatz zwischen den Befestigungsflächen

Hinweis

Balgzylinder können ihren Hub entlang einer Kreisbahn ausführen, hierbei darf der angegebene Kippwinkel α nicht überschritten werden. Bei der Auslegung ist zu beachten, dass an keiner Stelle

die minimale Höhe H2 unterschritten und die maximale Höhe H3 überschritten werden darf. Für die Berechnung der Hubkraft ist die Höhe in Plattenmitte X maßgebend.

Тур	D1 ∅	D2 Ø	D3 ∅	D4 ∅	H2	Н3	s _{max}	Kippwinkel α
	max.		±1	±0,5	min.	max.		max.
EBS-80-110	80	100	76,5	50	95	205	10	15°
EBS-100-105	97	115	86,5	60,5	95	200	10	15°

Bestellangaben – Schlauchrollbalg					
Baugröße	Hub	Teile-Nr.	Тур		
	[mm]				
80	110	193 794	EBS-80-110		
100	105	193 795	EBS-100-105		